Classical Combinatory Logic

Combinatory logic shows that bound variables can be eliminated without loss of expressiveness. It has applications both in the foundations of mathematics and in the implementation of functional programming languages. The original combinatory calculus corresponds to minimal implicative logic written...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings vol. AF,...; číslo Proceedings; s. 87 - 96
Hlavní autor: Nour, Karim
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: DMTCS 01.01.2005
Discrete Mathematics and Theoretical Computer Science
Discrete Mathematics & Theoretical Computer Science
Edice:DMTCS Proceedings
Témata:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Combinatory logic shows that bound variables can be eliminated without loss of expressiveness. It has applications both in the foundations of mathematics and in the implementation of functional programming languages. The original combinatory calculus corresponds to minimal implicative logic written in a system "à la Hilbert''. We present in this paper a combinatory logic which corresponds to propositional classical logic. This system is equivalent to the system $λ ^{Sym}_{Prop}$ of Barbanera and Berardi.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.3469