Simulation of the of the DeepLabv3 neural network learning process for the agricultural fields segmentation
Objective . Monitoring and determining the state of crops in agricultural production requires the use and improvement of neural network methods of artificial intelligence. The aim of the study is to create a mathematical model of the learning process of the DeepLabV3 neural network for intelligent a...
Uloženo v:
| Vydáno v: | Vestnik Dagestanskogo gosudarstvennogo tehničeskogo universiteta. Tehničeskie nauki (Online) Ročník 50; číslo 3; s. 142 - 149 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina ruština |
| Vydáno: |
Dagestan State Technical University
29.10.2023
|
| Témata: | |
| ISSN: | 2073-6185, 2542-095X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Objective
. Monitoring and determining the state of crops in agricultural production requires the use and improvement of neural network methods of artificial intelligence.
The aim of the study
is to create a mathematical model of the learning process of the DeepLabV3 neural network for intelligent analysis and segmentation of agricultural fields.
Method
. Based on the newly formed RGB database of images of agricultural fields, marked up into four classes, a neural network of the DeepLabV3 architecture was developed and trained. Approximations of the learning curve by the modified Johnson function are obtained by the methods of least squares and least modules.
Result
. A statistical assessment of the quality of training and approximation of neural networks to the DeepLabV3 architecture in combination with ResNet 50 was carried out. The constructed DNN family based on DeepLabV3 with ResNet50 showed the efficiency of recognition and sufficient speed in determining the state of crops.
Conclusions
. Approximation of the neural network learning diagram to the DeepLabV3 architecture, using a modified Johnson function, allows us to estimate the value of the “saturation” of the simulated dependence and predict the maximum value of the neural network metric without taking into account its possible retraining. |
|---|---|
| AbstractList | Objective. Monitoring and determining the state of crops in agricultural production requires the use and improvement of neural network methods of artificial intelligence.The aim of the study is to create a mathematical model of the learning process of the DeepLabV3 neural network for intelligent analysis and segmentation of agricultural fields.Method. Based on the newly formed RGB database of images of agricultural fields, marked up into four classes, a neural network of the DeepLabV3 architecture was developed and trained. Approximations of the learning curve by the modified Johnson function are obtained by the methods of least squares and least modules.Result. A statistical assessment of the quality of training and approximation of neural networks to the DeepLabV3 architecture in combination with ResNet 50 was carried out. The constructed DNN family based on DeepLabV3 with ResNet50 showed the efficiency of recognition and sufficient speed in determining the state of crops.Conclusions. Approximation of the neural network learning diagram to the DeepLabV3 architecture, using a modified Johnson function, allows us to estimate the value of the “saturation” of the simulated dependence and predict the maximum value of the neural network metric without taking into account its possible retraining. Objective . Monitoring and determining the state of crops in agricultural production requires the use and improvement of neural network methods of artificial intelligence. The aim of the study is to create a mathematical model of the learning process of the DeepLabV3 neural network for intelligent analysis and segmentation of agricultural fields. Method . Based on the newly formed RGB database of images of agricultural fields, marked up into four classes, a neural network of the DeepLabV3 architecture was developed and trained. Approximations of the learning curve by the modified Johnson function are obtained by the methods of least squares and least modules. Result . A statistical assessment of the quality of training and approximation of neural networks to the DeepLabV3 architecture in combination with ResNet 50 was carried out. The constructed DNN family based on DeepLabV3 with ResNet50 showed the efficiency of recognition and sufficient speed in determining the state of crops. Conclusions . Approximation of the neural network learning diagram to the DeepLabV3 architecture, using a modified Johnson function, allows us to estimate the value of the “saturation” of the simulated dependence and predict the maximum value of the neural network metric without taking into account its possible retraining. |
| Author | Belousov, I. S. Rogachev, A. F. |
| Author_xml | – sequence: 1 givenname: A. F. orcidid: 0000-0002-3077-6622 surname: Rogachev fullname: Rogachev, A. F. organization: Volgograd State Agricultural University – sequence: 2 givenname: I. S. surname: Belousov fullname: Belousov, I. S. organization: Volgograd State Technical University |
| BookMark | eNo9kUFLJDEQhYOMoDv6H_qw13ark07Sgb2IurvCgAcVvIUkXRmjPZ0h6dnFf2-mx9lD8R5F1VdQ7xtZjHFEQr43cEWbjtIfFCSrRdPxmgJlNYea1U1LS6kTck55saD4y6L44-QZucw5WCj7EoSEc_L-GDa7wUwhjlX01fSKR7lF3K6M_cuqEXfJDEWmfzG9VwOaNIZxXW1TdJhz5WOaN8w6BbcbpnnaBxz6XGVcb3Cc5gMX5NSbIePlly7J86-7p5s_9erh9_3N9ap2jWSqltK6DlplW4sAiinpLFIvPS0enDCmV5Z6znknhQeBvrfedKZz0LaCC7Yk9wduH82b3qawMelDRxP03IhprU2aghtQyx6kEIAUuGglFAwY1XhueyW4BVZYPw8sl2LOCf1_XgN6zkHvv6v339X7HDQHzXTJoZRinxw2frI |
| Cites_doi | 10.3390/agronomy10020207 10.1016/j.scitotenv.2021.149726 10.1016/j.rse.2021.112599 10.21822/2073-6185-2023-50-2-67-75 10.1016/j.rse.2020.112000 10.1109/CVPR.2016.90 10.1007/978-3-031-11058-0_72 10.1016/j.rse.2016.10.010 10.1007/978-3-319-33816-3_14 10.14529/cmse170303 10.1109/IGARSS.2016.7729467 10.3390/rs13224668 10.1109/LGRS.2017.2681128 10.1109/IGARSS.2004.1369747 10.15217/issn2079-0996.2018.4.70 10.1590/1678-992x-2022-0041 10.1371/journal.pone.0245230 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.21822/2073-6185-2023-50-3-142-149 |
| DatabaseName | CrossRef DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2542-095X |
| EndPage | 149 |
| ExternalDocumentID | oai_doaj_org_article_7d07660e2056470fa80a91f5bd965b03 10_21822_2073_6185_2023_50_3_142_149 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c1739-77bc8049b4be009397cbe2f7f29390c6aad9b2f555876f06efdbfa8a8c0446563 |
| IEDL.DBID | DOA |
| ISSN | 2073-6185 |
| IngestDate | Fri Oct 03 12:34:28 EDT 2025 Sat Nov 29 03:22:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English Russian |
| License | https://vestnik.dgtu.ru/jour/about/editorialPolicies#openAccessPolicy |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1739-77bc8049b4be009397cbe2f7f29390c6aad9b2f555876f06efdbfa8a8c0446563 |
| ORCID | 0000-0002-3077-6622 |
| OpenAccessLink | https://doaj.org/article/7d07660e2056470fa80a91f5bd965b03 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7d07660e2056470fa80a91f5bd965b03 crossref_primary_10_21822_2073_6185_2023_50_3_142_149 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-29 |
| PublicationDateYYYYMMDD | 2023-10-29 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | Vestnik Dagestanskogo gosudarstvennogo tehničeskogo universiteta. Tehničeskie nauki (Online) |
| PublicationYear | 2023 |
| Publisher | Dagestan State Technical University |
| Publisher_xml | – name: Dagestan State Technical University |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref1 doi: 10.3390/agronomy10020207 – ident: ref3 – ident: ref20 – ident: ref11 doi: 10.1016/j.scitotenv.2021.149726 – ident: ref12 doi: 10.1016/j.rse.2021.112599 – ident: ref22 – ident: ref24 doi: 10.21822/2073-6185-2023-50-2-67-75 – ident: ref25 – ident: ref7 doi: 10.1016/j.rse.2020.112000 – ident: ref27 – ident: ref23 doi: 10.1109/CVPR.2016.90 – ident: ref29 doi: 10.1007/978-3-031-11058-0_72 – ident: ref5 doi: 10.1016/j.rse.2016.10.010 – ident: ref9 – ident: ref19 – ident: ref15 doi: 10.1007/978-3-319-33816-3_14 – ident: ref17 – ident: ref21 doi: 10.14529/cmse170303 – ident: ref2 – ident: ref6 doi: 10.1109/IGARSS.2016.7729467 – ident: ref13 doi: 10.3390/rs13224668 – ident: ref14 doi: 10.1109/LGRS.2017.2681128 – ident: ref4 doi: 10.1109/IGARSS.2004.1369747 – ident: ref8 – ident: ref26 doi: 10.15217/issn2079-0996.2018.4.70 – ident: ref28 doi: 10.1590/1678-992x-2022-0041 – ident: ref18 doi: 10.1371/journal.pone.0245230 – ident: ref16 – ident: ref10 |
| SSID | ssib018270670 ssib044764369 ssj0002774599 |
| Score | 2.2362616 |
| Snippet | Objective
. Monitoring and determining the state of crops in agricultural production requires the use and improvement of neural network methods of artificial... Objective. Monitoring and determining the state of crops in agricultural production requires the use and improvement of neural network methods of artificial... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 142 |
| SubjectTerms | artificial neural networks crops mathematical modeling segmentation problem |
| Title | Simulation of the of the DeepLabv3 neural network learning process for the agricultural fields segmentation |
| URI | https://doaj.org/article/7d07660e2056470fa80a91f5bd965b03 |
| Volume | 50 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2542-095X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002774599 issn: 2073-6185 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2542-095X dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044764369 issn: 2073-6185 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0yiOhCfOKbLGYbzKRp0yx94mIcBBXchTwHEWeGebj0271JOkNduXHRlgYS6OGSe265OQehbvC-sq7gxNbOEW5NQXRBa1K6QKXpaWGya0lfDAb125t8all9xZ6wLA-cgbsUDirtinoGmZoLGnRNteyF0jhZlSbrfFIhW8UURBKQZhEPoCzfOReQebOVdtqjGbCeMplLwuQC6qe63EDd2BcNU9nlapBEd3FSwlZFepzBJX_lr5bMf8pH9ztouyGS-Cp_wC5amy720FZLXnAffTy_fzbuXHgcMFC95ePW-0lfm68CRz1LWGaUu8FxYyIxxJN8gAADp00z9HC6UunAqe1thmd--NkcXRodoNf7u5ebB9KYKxDbE4UEVm1sDeWB4cbH3xpSWONZEAHyv6S20tpJw0KUAxNVoJUPzgD4urY0aawVh6gzGo_8EcI8aM2scw5SG7CroIEUBga8yEXx_Iofo3IJmZpkDQ0FtUeCWkWoVYRaRahVSVUB5QiDSx6j64jvak5Uwk4DEB-qiQ_1V3yc_Mcip2gzBQLkLCbPUGc-XfhztG6_5u-z6UUKPbg_ft_9AOyS1hA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+the+of+the+DeepLabv3+neural+network+learning+process+for+the+agricultural+fields+segmentation&rft.jtitle=Vestnik+Dagestanskogo+gosudarstvennogo+tehni%C4%8Deskogo+universiteta.+Tehni%C4%8Deskie+nauki+%28Online%29&rft.au=A.+F.+Rogachev&rft.au=I.+S.+Belousov&rft.date=2023-10-29&rft.pub=Dagestan+State+Technical+University&rft.issn=2073-6185&rft.eissn=2542-095X&rft.volume=50&rft.issue=3&rft.spage=142&rft.epage=149&rft_id=info:doi/10.21822%2F2073-6185-2023-50-3-142-149&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7d07660e2056470fa80a91f5bd965b03 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-6185&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-6185&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-6185&client=summon |