A New Preconditioned Inexact Line-Search Technique for Unconstrained Optimization

In this paper, we study the global convergence properties of the new class of preconditioned conjugate gradient descent algorithm, when applied to convex objective non-linear unconstrained optimization functions. We assume that a new inexact line search rule which is similar to the Armijo line-searc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AL-Rafidain journal of computer sciences and mathematics Ročník 9; číslo 2; s. 25 - 39
Hlavní autoři: Abbas Y. Al-Bayati, Ivan S. Latif
Médium: Journal Article
Jazyk:angličtina
Vydáno: Mosul University 04.12.2012
Témata:
ISSN:1815-4816, 2311-7990
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study the global convergence properties of the new class of preconditioned conjugate gradient descent algorithm, when applied to convex objective non-linear unconstrained optimization functions. We assume that a new inexact line search rule which is similar to the Armijo line-search rule is used. It's an estimation formula to choose a large step-size at each iteration and use the same formula to find the direction search. A new preconditioned conjugate gradient direction search is used to replace the conjugate gradient descent direction of ZIR-algorithm. Numerical results on twenty five well-know test functions with various dimensions show that the new inexact line-search and the new preconditioned conjugate gradient search directions are efficient for solving unconstrained nonlinear optimization problem in many situations.
ISSN:1815-4816
2311-7990
DOI:10.33899/csmj.2012.163698