Using NeuralPDE.jl to solve differential equations
This paper describes the application of physics-informed neural network (PINN) for solving partial derivative equations. Physics Informed Neural Network is a type of deep learning that takes into account physical laws to solve physical equations more efficiently compared to classical methods. The so...
Uložené v:
| Vydané v: | Discrete and continuous models and applied computational science Ročník 33; číslo 3; s. 284 - 298 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Peoples’ Friendship University of Russia (RUDN University)
15.10.2025
|
| Predmet: | |
| ISSN: | 2658-4670, 2658-7149 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper describes the application of physics-informed neural network (PINN) for solving partial derivative equations. Physics Informed Neural Network is a type of deep learning that takes into account physical laws to solve physical equations more efficiently compared to classical methods. The solution of partial derivative equations (PDEs) is of most interest, since numerical methods and classical deep learning methods are inefficient and too difficult to tune in cases when the complex physics of the process needs to be taken into account. The advantage of PINN is that it minimizes a loss function during training, which takes into account the constraints of the system and th e laws of the domain. In this paper, we consider the solution of ordinary differential equations (ODEs) and PDEs using PINN, and then compare the efficiency and accuracy of this solution method compared to classical methods. The solution is implemented in the Julia programming language. We use NeuralPDE.jl, a package containing methods for solving equations in partial derivatives using physics-based neural networks. The classical method for solving PDEs is implemented through the DifferentialEquations.jl library. As a result, a comparative analysis of the considered solution methods for ODEs and PDEs has been performed, and an evaluation of their performance and accuracy has been obtained. In this paper we have demonstrated the basic capabilities of the NeuralPDE.jl package and its efficiency in comparison with numerical methods. |
|---|---|
| AbstractList | This paper describes the application of physics-informed neural network (PINN) for solving partial derivative equations. Physics Informed Neural Network is a type of deep learning that takes into account physical laws to solve physical equations more efficiently compared to classical methods. The solution of partial derivative equations (PDEs) is of most interest, since numerical methods and classical deep learning methods are inefficient and too difficult to tune in cases when the complex physics of the process needs to be taken into account. The advantage of PINN is that it minimizes a loss function during training, which takes into account the constraints of the system and th e laws of the domain. In this paper, we consider the solution of ordinary differential equations (ODEs) and PDEs using PINN, and then compare the efficiency and accuracy of this solution method compared to classical methods. The solution is implemented in the Julia programming language. We use NeuralPDE.jl, a package containing methods for solving equations in partial derivatives using physics-based neural networks. The classical method for solving PDEs is implemented through the DifferentialEquations.jl library. As a result, a comparative analysis of the considered solution methods for ODEs and PDEs has been performed, and an evaluation of their performance and accuracy has been obtained. In this paper we have demonstrated the basic capabilities of the NeuralPDE.jl package and its efficiency in comparison with numerical methods. |
| Author | Demidova, Ekaterina A. Gevorkyan, Migran N. Shtepa, Kristina A. Korolkova, Anna V. Kulyabov, Dmitry S. Belicheva, Daria M. |
| Author_xml | – sequence: 1 givenname: Daria M. orcidid: 0009-0007-0072-0453 surname: Belicheva fullname: Belicheva, Daria M. organization: RUDN University – sequence: 2 givenname: Ekaterina A. orcidid: 0009-0005-2255-4025 surname: Demidova fullname: Demidova, Ekaterina A. organization: RUDN University – sequence: 3 givenname: Kristina A. orcidid: 0000-0002-4092-4326 surname: Shtepa fullname: Shtepa, Kristina A. organization: RUDN University – sequence: 4 givenname: Migran N. orcidid: 0000-0002-4834-4895 surname: Gevorkyan fullname: Gevorkyan, Migran N. organization: RUDN University – sequence: 5 givenname: Anna V. orcidid: 0000-0001-7141-7610 surname: Korolkova fullname: Korolkova, Anna V. organization: RUDN University – sequence: 6 givenname: Dmitry S. orcidid: 0000-0002-0877-7063 surname: Kulyabov fullname: Kulyabov, Dmitry S. organization: RUDN University, Joint Institute for Nuclear Research |
| BookMark | eNo9kE1LAzEQhoNUsNb-hz14Tc3XJlnwIrVqoagHew6z-Shb1o0mW8F_725bPM3wvsMD81yjSRc7j9AtJQvGuOR3TJYaC6kIZoSVmHPMMdMCs0pfoOmxVVRUk_M-Xl6hec57QgjTipdEThHb5qbbFa_-kKB9f1wt9m3RxyLH9scXrgnBJ9_1DbSF_z5A38Qu36DLAG328_Ocoe3T6mP5gjdvz-vlwwZbqrjGlCuQThERwIeSuNpzQZiCYGupbVC1Zy5oXVEquJMiVDL4evjMEyssCZ7P0PrEdRH25is1n5B-TYTGHIOYdgZS39jWG7CsGiQoJmotlOIVlFpRkBCYcIHSgXV_YtkUc04-_PMoMUedZpRkRklm1Gk4N0OmhRl08j9jCml9 |
| Cites_doi | 10.1145/3511528.3511535 10.5334/jors.151 10.1016/j.icheatmasstransfer.2022.105890 10.22363/2658-4670-2023-31-4-399-418 10.1016/0893-6080(91)90009-T 10.1016/j.jcp.2018.10.045 10.48550/ARXIV.2107.09443 10.22363/2658-4670-2024-32-1-48-60 10.1117/12.2315066 10.22363/2658-4670-2024-32-3-306-318 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.22363/2658-4670-2025-33-3-284-298 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2658-7149 |
| EndPage | 298 |
| ExternalDocumentID | oai_doaj_org_article_ac29202724b847739a5871a6af24df11 10_22363_2658_4670_2025_33_3_284_298 |
| GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ VCL VIT |
| ID | FETCH-LOGICAL-c1738-137a6d704faef50dbe34027afcb68cf7be2df8891143d64f96feb223e0c4c0fe3 |
| IEDL.DBID | DOA |
| ISSN | 2658-4670 |
| IngestDate | Mon Nov 03 22:03:12 EST 2025 Wed Nov 05 20:56:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1738-137a6d704faef50dbe34027afcb68cf7be2df8891143d64f96feb223e0c4c0fe3 |
| ORCID | 0000-0002-4834-4895 0000-0001-7141-7610 0009-0007-0072-0453 0000-0002-0877-7063 0000-0002-4092-4326 0009-0005-2255-4025 |
| OpenAccessLink | https://doaj.org/article/ac29202724b847739a5871a6af24df11 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ac29202724b847739a5871a6af24df11 crossref_primary_10_22363_2658_4670_2025_33_3_284_298 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-15 |
| PublicationDateYYYYMMDD | 2025-10-15 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Discrete and continuous models and applied computational science |
| PublicationYear | 2025 |
| Publisher | Peoples’ Friendship University of Russia (RUDN University) |
| Publisher_xml | – name: Peoples’ Friendship University of Russia (RUDN University) |
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref2 – ident: ref3 – ident: ref7 – ident: ref13 doi: 10.1145/3511528.3511535 – ident: ref16 doi: 10.5334/jors.151 – ident: ref8 doi: 10.1016/j.icheatmasstransfer.2022.105890 – ident: ref19 doi: 10.22363/2658-4670-2023-31-4-399-418 – ident: ref5 doi: 10.1016/0893-6080(91)90009-T – ident: ref4 doi: 10.1016/j.jcp.2018.10.045 – ident: ref6 doi: 10.48550/ARXIV.2107.09443 – ident: ref20 doi: 10.22363/2658-4670-2024-32-1-48-60 – ident: ref9 – ident: ref18 – ident: ref21 doi: 10.1117/12.2315066 – ident: ref10 – ident: ref11 – ident: ref17 – ident: ref1 doi: 10.48550/ARXIV.2107.09443 – ident: ref12 – ident: ref14 – ident: ref15 doi: 10.22363/2658-4670-2024-32-3-306-318 |
| SSID | ssj0002873506 ssib050730783 |
| Score | 2.3064177 |
| Snippet | This paper describes the application of physics-informed neural network (PINN) for solving partial derivative equations. Physics Informed Neural Network is a... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 284 |
| SubjectTerms | differential equations julia programming language neuralpde numerical methods physics-informed neural networks |
| Title | Using NeuralPDE.jl to solve differential equations |
| URI | https://doaj.org/article/ac29202724b847739a5871a6af24df11 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2658-7149 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002873506 issn: 2658-4670 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2658-7149 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050730783 issn: 2658-4670 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iInoQn1hf7MFr2mzeOfpo8SClB4XeQnaTgKW02tb-fifZttSTF68DG7LfzM5kNsn3IXSfxF8jlClMTGUwVzFgbTjFTLuq8iYI5rNqyavq9_VwaAZbUl_pTFhDD9wA13F10lOiivIKEqlixglY4zvpIuU-Nrd6iTJbzRREkkiBu96fGuVfSIqJLLRJoeRiyA5kHyZK2lAdJetsjBA0VGDGMMOQtzE1-le92qL1z_Wnd4yOVgvH4qGZ8AnaCZNTdLhFJ3iGaN7_LxLfhhsPnrvt0bhYTAuIrmUo1koo8EWPi_DVMHzPz9F7r_v29IJXmgi4LhXkppIpJ70iPLoQBfFVYNABKhfrSuo6qipQH7WGFMaZlzwaGaF3piyQmtckBnaBdifTSbhERempkdQ744PhJQwYRXQySXGoWBsvW0is39x-NtQXFlqGjJhNiNmEmE2IWcYs2DS3gFgLPSaYNs8kAutsALfalVvtX269-o9BrtFB9mc6gCJu0O5i9h1u0V69XHzMZ3c5Yn4AoPi7pw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+NeuralPDE.jl+to+solve+differential+equations&rft.jtitle=Discrete+and+continuous+models+and+applied+computational+science&rft.au=Belicheva%2C+Daria+M.&rft.au=Demidova%2C+Ekaterina+A.&rft.au=Shtepa%2C+Kristina+A.&rft.au=Gevorkyan%2C+Migran+N.&rft.date=2025-10-15&rft.issn=2658-4670&rft.eissn=2658-7149&rft.volume=33&rft.issue=3&rft.spage=284&rft.epage=298&rft_id=info:doi/10.22363%2F2658-4670-2025-33-3-284-298&rft.externalDBID=n%2Fa&rft.externalDocID=10_22363_2658_4670_2025_33_3_284_298 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2658-4670&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2658-4670&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2658-4670&client=summon |