An innovativefractal architecture model for implementing MapReduce in an open multiprocessing parallel environment

One of the infrastructure applications that cloud computing offers as a service is parallel data processing. MapReduce is a type of parallel processing used more and more by data-intensive applications in cloud computing environments. MapReduce is based on a strategy called "divide and conquer,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indonesian Journal of Electrical Engineering and Computer Science Jg. 30; H. 2; S. 1059
Hauptverfasser: Khudhair, Muslim Mohsin, AL-Rammahi, Adil, Rabee, Furkan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.05.2023
ISSN:2502-4752, 2502-4760
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract One of the infrastructure applications that cloud computing offers as a service is parallel data processing. MapReduce is a type of parallel processing used more and more by data-intensive applications in cloud computing environments. MapReduce is based on a strategy called "divide and conquer," which uses regular computers, also called "nodes," to do processing in parallel. This paper looks at how open multiprocessing (OpenMP), the best shared-memory parallel programming model for high-performance computing, can be used with the proposed fractal network model in the MapReduce application. A well-known model, the cube, is used to compare the fractal network model and its work. Where experiments demonstrated that the fractal model is preferable to the cube model. The fractal model achieved an average speedup of 2.7 and an efficiency rate of 67.7%. In contrast, the cube model could only reach an average speedup of 2.5 and an efficiency rate of 60.4%.
AbstractList One of the infrastructure applications that cloud computing offers as a service is parallel data processing. MapReduce is a type of parallel processing used more and more by data-intensive applications in cloud computing environments. MapReduce is based on a strategy called "divide and conquer," which uses regular computers, also called "nodes," to do processing in parallel. This paper looks at how open multiprocessing (OpenMP), the best shared-memory parallel programming model for high-performance computing, can be used with the proposed fractal network model in the MapReduce application. A well-known model, the cube, is used to compare the fractal network model and its work. Where experiments demonstrated that the fractal model is preferable to the cube model. The fractal model achieved an average speedup of 2.7 and an efficiency rate of 67.7%. In contrast, the cube model could only reach an average speedup of 2.5 and an efficiency rate of 60.4%.
Author Khudhair, Muslim Mohsin
Rabee, Furkan
AL-Rammahi, Adil
Author_xml – sequence: 1
  givenname: Muslim Mohsin
  orcidid: 0000-0002-8142-4029
  surname: Khudhair
  fullname: Khudhair, Muslim Mohsin
– sequence: 2
  givenname: Adil
  orcidid: 0000-0003-3856-0663
  surname: AL-Rammahi
  fullname: AL-Rammahi, Adil
– sequence: 3
  givenname: Furkan
  orcidid: 0000-0002-0517-2042
  surname: Rabee
  fullname: Rabee, Furkan
BookMark eNo9kF1LwzAUhoNMcM79h-B960myNIt3Y_gFE0H0OmTpiUbaNKRdwX9v58Src-Cc533huSSz2EUk5JpByZjU7CZ8Ibq-HAWUgZcpMZC6YFCpMzLnEnixUhXM_nfJL8iy78MeBDA93cSc5E2kIcZutEMY0WfrBttQm91nGNANh4y07WpsqO8yDW1qsMU4hPhBn216xfrgcOKpjbRLGGl7aIaQcudw6pmeks22aSYc4xhyF4_wFTn3tulx-TcX5P3-7m37WOxeHp62m13hmBKq8F6svda80pV0dq8sVwBeggbYc-WZVtWqZtaugddcSocVW9t9tQJuPRO6Fgtye8p1uev7jN6kHFqbvw0D8yvQnASaSaAJ3JwEmqNA8QO9uGx1
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.11591/ijeecs.v30.i2.pp1059-1067
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2502-4760
ExternalDocumentID 10_11591_ijeecs_v30_i2_pp1059_1067
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
ID FETCH-LOGICAL-c1737-ff38f9926965cab7a2700f50900b27f19764d1aa802d255ce618ab6402af139d3
ISSN 2502-4752
IngestDate Sat Nov 29 04:02:42 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
License http://creativecommons.org/licenses/by-nc/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1737-ff38f9926965cab7a2700f50900b27f19764d1aa802d255ce618ab6402af139d3
ORCID 0000-0002-0517-2042
0000-0003-3856-0663
0000-0002-8142-4029
OpenAccessLink https://ijeecs.iaescore.com/index.php/IJEECS/article/download/30871/17288
ParticipantIDs crossref_primary_10_11591_ijeecs_v30_i2_pp1059_1067
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Indonesian Journal of Electrical Engineering and Computer Science
PublicationYear 2023
SSID ssib030194763
ssib044739472
ssib052605909
Score 1.8455658
Snippet One of the infrastructure applications that cloud computing offers as a service is parallel data processing. MapReduce is a type of parallel processing used...
SourceID crossref
SourceType Index Database
StartPage 1059
Title An innovativefractal architecture model for implementing MapReduce in an open multiprocessing parallel environment
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2502-4760
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044739472
  issn: 2502-4752
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbptodeSktb-kaH3opSW35JR1OytLBZStjC3oxky8TtxhhnE_bUH7q_Zmck2xHblj6gF2MUe5J4Pj6NrG9mCHlbh5motNBMaCVYrGPFdKpLFuo4g8_qhMc2UfgkOz0V5-fy82x2PebC7C-ythVXV7L7r66GMXA2ps7-hbsnozAA5-B0OILb4fhHjs9Ru-hane5NjUlQWA7A3y-w3W-svrDZDPJxfGGwVN0KC7naMiLYsaIz7SA4dNkENnFd9dh95cLPkPMD3E_YHcTYzEwv1l3YZjsWD14BRLtxMbaVGFlmmgHWu2qtGguo5Q6i4Q3wz3rbTGDOT9hKbTbKdiV-l1cHrchKaScvOt713wb0Dy82uCcjdPwHwRlnceYK3M6NP-ZaEIwEPmzsNN462rExxo4_nyYSifNE89WYcjvfR8G84fOuw-sZ1tQ7TI6jIODWnDkpGe0aCqwVzlYBtoqGF85WgbbukLs8SyQy7vL7YuQ64FUJ_2PixjjOIulV8k9wnSmtQml6DkPNXPy697_86V585QVKZw_Jg8HrNHfIfERmpn1M-rylP6CS-qikFpUUUEl9VNIJlXA_VS1FVNJbqKQjKqmHyifky_Hi7MNHNrT7YGWYRRmr60jUUvJUpkmpdKZQE1FDQBsEmgNxQOAcV6FSIuAVLIRLk4ZC6TQOuKphHVNFT8lRCxB_RqiKSiSglAeJgYArlQEY1FUYKWFSHQXPSTQ-pKJzVV2K33vyxT_d9ZLcP6D7FTm67HfmNblX7i-bbf_GguIGSACmtA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+innovativefractal+architecture+model+for+implementing+MapReduce+in+an+open+multiprocessing+parallel+environment&rft.jtitle=Indonesian+Journal+of+Electrical+Engineering+and+Computer+Science&rft.au=Khudhair%2C+Muslim+Mohsin&rft.au=AL-Rammahi%2C+Adil&rft.au=Rabee%2C+Furkan&rft.date=2023-05-01&rft.issn=2502-4752&rft.eissn=2502-4760&rft.volume=30&rft.issue=2&rft.spage=1059&rft_id=info:doi/10.11591%2Fijeecs.v30.i2.pp1059-1067&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijeecs_v30_i2_pp1059_1067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2502-4752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2502-4752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2502-4752&client=summon