Slicings of parallelogram polyominoes, or how Baxter and Schröder can be reconciled

We provide a new succession rule (i.e. generating tree) associated with Schröder numbers, that interpolates between the known succession rules for Catalan and Baxter numbers. We define Schröder and Baxter generalizations of parallelogram polyominoes (called slicings) which grow according to these su...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings, 28th...
Hlavní autori: Bouvel, Mathilde, Guerrini, Veronica, Rinaldi, Simone
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: DMTCS 22.04.2020
Discrete Mathematics & Theoretical Computer Science
Predmet:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We provide a new succession rule (i.e. generating tree) associated with Schröder numbers, that interpolates between the known succession rules for Catalan and Baxter numbers. We define Schröder and Baxter generalizations of parallelogram polyominoes (called slicings) which grow according to these succession rules. We also exhibit Schröder subclasses of Baxter classes, namely a Schröder subset of triples of non-intersecting lattice paths, and a new Schröder subset of Baxter permutations.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.6357