Adaptive selection of auxiliary objectives in multiobjective evolutionary algorithms

Subject of Research.We propose to modify the EA+RL method, which increases efficiency of evolutionary algorithms by means of auxiliary objectives. The proposed modification is compared to the existing objective selection methods on the example of travelling salesman problem. Method. In the EA+RL met...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki Ročník 16; číslo 3; s. 460 - 466
Hlavní autoři: Petrova, I.A., Buzdalova, A.S., Shalyto, A.A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: ITMO University 07.06.2016
Témata:
ISSN:2226-1494, 2500-0373
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Subject of Research.We propose to modify the EA+RL method, which increases efficiency of evolutionary algorithms by means of auxiliary objectives. The proposed modification is compared to the existing objective selection methods on the example of travelling salesman problem. Method. In the EA+RL method a reinforcement learning algorithm is used to select an objective – the target objective or one of the auxiliary objectives – at each iteration of the single-objective evolutionary algorithm.The proposed modification of the EA+RL method adopts this approach for the usage with a multiobjective evolutionary algorithm. As opposed to theEA+RL method, in this modification one of the auxiliary objectives is selected by reinforcement learning and optimized together with the target objective at each step of the multiobjective evolutionary algorithm. Main Results.The proposed modification of the EA+RL method was compared to the existing objective selection methods on the example of travelling salesman problem. In the EA+RL method and its proposed modification reinforcement learning algorithms for stationary and non-stationary environment were used. The proposed modification of the EA+RL method applied with reinforcement learning for non-stationary environment outperformed the considered objective selection algorithms on the most problem instances. Practical Significance. The proposed approach increases efficiency of evolutionary algorithms, which may be used for solving discrete NP-hard optimization problems. They are, in particular, combinatorial path search problems and scheduling problems.
AbstractList Subject of Research.We propose to modify the EA+RL method, which increases efficiency of evolutionary algorithms by means of auxiliary objectives. The proposed modification is compared to the existing objective selection methods on the example of travelling salesman problem. Method. In the EA+RL method a reinforcement learning algorithm is used to select an objective – the target objective or one of the auxiliary objectives – at each iteration of the single-objective evolutionary algorithm.The proposed modification of the EA+RL method adopts this approach for the usage with a multiobjective evolutionary algorithm. As opposed to theEA+RL method, in this modification one of the auxiliary objectives is selected by reinforcement learning and optimized together with the target objective at each step of the multiobjective evolutionary algorithm. Main Results.The proposed modification of the EA+RL method was compared to the existing objective selection methods on the example of travelling salesman problem. In the EA+RL method and its proposed modification reinforcement learning algorithms for stationary and non-stationary environment were used. The proposed modification of the EA+RL method applied with reinforcement learning for non-stationary environment outperformed the considered objective selection algorithms on the most problem instances. Practical Significance. The proposed approach increases efficiency of evolutionary algorithms, which may be used for solving discrete NP-hard optimization problems. They are, in particular, combinatorial path search problems and scheduling problems.
Author Shalyto, A.A.
Petrova, I.A.
Buzdalova, A.S.
Author_xml – sequence: 1
  givenname: I.A.
  surname: Petrova
  fullname: Petrova, I.A.
– sequence: 2
  givenname: A.S.
  surname: Buzdalova
  fullname: Buzdalova, A.S.
– sequence: 3
  givenname: A.A.
  surname: Shalyto
  fullname: Shalyto, A.A.
BookMark eNo9kFtLAzEQhYNUsNb-h33wNTq574IvpXgpFHypzyGbzdaUdFM226L_3my1wsxkOJw5hO8WTbrYOYTuCTwQJUr5SCmVmPCKYwokbxIzzCXklldoSgUABqbYJO8X5w2ap7QDAKLyoHSKNovGHAZ_ckVywdnBx66IbWGOXz54038Xsd6N8smlwnfF_hiy5SIV7hTDcbwZnSZsY--Hz326Q9etCcnN_94Z-nh53izf8Pr9dbVcrLElikncNLa1olRUUWpLUHXFJAMnLZS0apiSlXWWcNkaQbKhEaIitOasFLUxrWFshla_uU00O33o_T7_Q0fj9VmI_VabfvA2ON1ykm8bxyoquOOmAiKMAAJcMAvU5qyn3yzbx5R61_7nEdBn4HrEqEeMegSuczGdgeeW7AfLuXZu
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.17586/2226-1494-2016-16-3-460-466
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access资源_DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2500-0373
EndPage 466
ExternalDocumentID oai_doaj_org_article_f4112bde39254e4a9015a5010453c02c
10_17586_2226_1494_2016_16_3_460_466
GroupedDBID 642
AAYXX
ABJCF
ABUWG
ADBBV
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
BPHCQ
BYOGL
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IPNFZ
KQ8
M7S
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RIG
VCL
VIT
ID FETCH-LOGICAL-c1736-ddcfc5872722c807b93630e6c0829d3769cec146fa512c8d55912b4385baafa33
IEDL.DBID DOA
ISSN 2226-1494
IngestDate Mon Nov 10 19:22:36 EST 2025
Sat Nov 29 03:57:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1736-ddcfc5872722c807b93630e6c0829d3769cec146fa512c8d55912b4385baafa33
OpenAccessLink https://doaj.org/article/f4112bde39254e4a9015a5010453c02c
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_f4112bde39254e4a9015a5010453c02c
crossref_primary_10_17586_2226_1494_2016_16_3_460_466
PublicationCentury 2000
PublicationDate 2016-06-07
PublicationDateYYYYMMDD 2016-06-07
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-07
  day: 07
PublicationDecade 2010
PublicationTitle Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki
PublicationYear 2016
Publisher ITMO University
Publisher_xml – name: ITMO University
SSID ssj0001700022
ssib026971427
Score 1.9508882
Snippet Subject of Research.We propose to modify the EA+RL method, which increases efficiency of evolutionary algorithms by means of auxiliary objectives. The proposed...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 460
SubjectTerms evolutionary algorithm
multiobjective optimization
reinforcement learning
travelling salesman problem
Title Adaptive selection of auxiliary objectives in multiobjective evolutionary algorithms
URI https://doaj.org/article/f4112bde39254e4a9015a5010453c02c
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access资源_DOAJ
  customDbUrl:
  eissn: 2500-0373
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001700022
  issn: 2226-1494
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: East Europe, Central Europe Database
  customDbUrl:
  eissn: 2500-0373
  dateEnd: 20200131
  omitProxy: false
  ssIdentifier: ssj0001700022
  issn: 2226-1494
  databaseCode: BYOGL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastcentraleurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2500-0373
  dateEnd: 20200131
  omitProxy: false
  ssIdentifier: ssj0001700022
  issn: 2226-1494
  databaseCode: M7S
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2500-0373
  dateEnd: 20200131
  omitProxy: false
  ssIdentifier: ssj0001700022
  issn: 2226-1494
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2500-0373
  dateEnd: 20200131
  omitProxy: false
  ssIdentifier: ssj0001700022
  issn: 2226-1494
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iInoQn_gmB6_BtkmT5li1qwvr7rIPWU8hTVLQwyq-fr8z7e6ynrwIDZSQlPJNmPkmTb8h5LIETht0IlkWR44JkVRMqygwDxNSFUJISlsXm1DdbjaZ6P5SqS88E9bIAzfAXVUCGEHpA8TxVARhMX7ZFLOIlLsoceh9gfUsJVOwkhKpVSxm-pYvjUgMRiusNAd8g0FaIDbIJXoM4MvyatEJiyaGO8k4EzKCJn_FqyVZ_zr-tHbI9ow40rx54V2yEqZ7ZGtJTnCfjPLbvD9qPxZ0WHSK-nQI7bVoPp60IWMfPNFeXdwEBgxpu0sfxh0YMu-ixWOvM66lcWFk3rnrDdqj-4fhARm3itHNPZtVTWAuVlwy713l0gw_sCYui1SpueRRkA7_ovXgT7QLDvxjZSHWu8xDSgEAC56lpbWV5fyQrE5fp-GI0NR6DeHbZ0p74XxkuROo0Kd0BUQgxMcknWNj3hpxDINJBWJqEFODmBrE1MDFDWAKTR6TawRyMQclrusOMLyZGd78ZfiT_3jIKdmsLY7bKuqMrH6-f4Vzsu6-P58_3i_I2nXR7Q8u6rX1A9-qwM8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADAPTIVE+SELECTION+OF+AUXILIARY+OBJECTIVES+IN+MULTIOBJECTIVE+EVOLUTIONARY+ALGORITHMS&rft.jtitle=Nauchno-tekhnicheski%C4%AD+vestnik+informat%CD%A1s%EF%B8%A1ionnykh+tekhnologi%C4%AD%2C+mekhaniki+i+optiki&rft.au=I.+A.+Petrova&rft.au=A.+S.+Buzdalova&rft.au=A.+A.+Shalyto&rft.date=2016-06-07&rft.pub=ITMO+University&rft.issn=2226-1494&rft.eissn=2500-0373&rft.volume=16&rft.issue=3&rft.spage=460&rft.epage=466&rft_id=info:doi/10.17586%2F2226-1494-2016-16-3-460-466&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f4112bde39254e4a9015a5010453c02c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-1494&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-1494&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-1494&client=summon