Symmetric Fundamental Expansions to Schur Positivity
We consider families of quasisymmetric functions with the property that if a symmetric function f is a positive sum of functions in one of these families, then f is necessarily a positive sum of Schur functions. Furthermore, in each of the families studied, we give a combinatorial description of the...
Uložené v:
| Vydané v: | Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings, 28th... |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
DMTCS
22.04.2020
Discrete Mathematics & Theoretical Computer Science |
| Predmet: | |
| ISSN: | 1365-8050, 1462-7264, 1365-8050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We consider families of quasisymmetric functions with the property that if a symmetric function f is a positive sum of functions in one of these families, then f is necessarily a positive sum of Schur functions. Furthermore, in each of the families studied, we give a combinatorial description of the Schur coefficients of f. We organize six such families into a poset, where functions in higher families in the poset are always positive integer sums of functions in each of the lower families. |
|---|---|
| ISSN: | 1365-8050 1462-7264 1365-8050 |
| DOI: | 10.46298/dmtcs.6366 |