Sports training injury risk assessment combined with dynamic analysis algorithm
To explore the application of dynamic analysis algorithm in sports training injury risk assessment, this paper takes the Spatio-Temporal Graph Convolutional Network (ST-GCN) as the main algorithm, and introduces the Adaptive Graph Convolution Module (AGCM) and Residual Channel Attention Module (RCAM...
Gespeichert in:
| Veröffentlicht in: | Molecular & cellular biomechanics Jg. 21; H. 3; S. 484 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
18.11.2024
|
| ISSN: | 1556-5297, 1556-5300 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To explore the application of dynamic analysis algorithm in sports training injury risk assessment, this paper takes the Spatio-Temporal Graph Convolutional Network (ST-GCN) as the main algorithm, and introduces the Adaptive Graph Convolution Module (AGCM) and Residual Channel Attention Module (RCAM). ST-GCN is improved to form AGCM + RCAM-ST-GCN (ARST-GCN) motion posture recognition algorithm. Meanwhile, combined with the extreme gradient boosting (XG Boost), the final physical training injury risk assessment model is formed. The performance of the improved ARST-GCN and the proposed damage risk assessment model is verified by experiments. The results show that ARST-GCN, which combines AGCM and RCAM modules, performs best in all indicators. Compared with ST-GCN, the accuracy rate is increased by 1.94% and the F1 value is increased by 4.3%. In addition, in the performance comparison of different sports injury risk models, the recall rate and F2 value of XGBoost are 0.937 and 0.893, respectively, and the overall performance is the best, indicating that XGBoost has significant advantages in dealing with sports injury risk assessment (SIRA) tasks. The research results provide theoretical basis and practical reference for injury prevention in sports training, and help to improve the accuracy and reliability of SIRA. |
|---|---|
| AbstractList | To explore the application of dynamic analysis algorithm in sports training injury risk assessment, this paper takes the Spatio-Temporal Graph Convolutional Network (ST-GCN) as the main algorithm, and introduces the Adaptive Graph Convolution Module (AGCM) and Residual Channel Attention Module (RCAM). ST-GCN is improved to form AGCM + RCAM-ST-GCN (ARST-GCN) motion posture recognition algorithm. Meanwhile, combined with the extreme gradient boosting (XG Boost), the final physical training injury risk assessment model is formed. The performance of the improved ARST-GCN and the proposed damage risk assessment model is verified by experiments. The results show that ARST-GCN, which combines AGCM and RCAM modules, performs best in all indicators. Compared with ST-GCN, the accuracy rate is increased by 1.94% and the F1 value is increased by 4.3%. In addition, in the performance comparison of different sports injury risk models, the recall rate and F2 value of XGBoost are 0.937 and 0.893, respectively, and the overall performance is the best, indicating that XGBoost has significant advantages in dealing with sports injury risk assessment (SIRA) tasks. The research results provide theoretical basis and practical reference for injury prevention in sports training, and help to improve the accuracy and reliability of SIRA. |
| Author | Xue, Yuan Hou, Zhihong |
| Author_xml | – sequence: 1 givenname: Zhihong surname: Hou fullname: Hou, Zhihong – sequence: 2 givenname: Yuan surname: Xue fullname: Xue, Yuan |
| BookMark | eNplkE1Lw0AQhhepYKviX9ibp-h-TLrJUYpfUOhBPYfJ7qZuTTZlJyL590arFz3Ny7wPA_Ms2Cz20TN2IcXVUi2lue5sDQUcsbnM82WWayFmv1mV5oQtiHZCgCyVmbPN075PA_EhYYghbnmIu_c08hTojSORJ-p8HLjtuzpE7_hHGF65GyN2wXKM2I4UiGO77dPUdGfsuMGW_PnPPGUvd7fPq4dsvbl_XN2sMyuNhsxpMKUXoMEjIEDhpr0RjVJ5UXrpSqxBF05JNQEF1LXSjcmVLTU6KKzUp-zycNemnij5ptqn0GEaKymqbw_VwcNEZn9IGwYcQh-_fm7_8Z-tMmKo |
| CitedBy_id | crossref_primary_10_1177_14727978251361419 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.62617/mcb484 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1556-5300 |
| ExternalDocumentID | 10_62617_mcb484 |
| GroupedDBID | --- 123 AAFWJ AAYXX ADMLS AENEX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU CITATION EBS EJD F5P HCIFZ M7P P2P PHGZM PHGZT PIMPY PQGLB RTS |
| ID | FETCH-LOGICAL-c1734-d3479e0434ea4a448dc1770f22589e1d9ab438d2124ea84bb23f752c93ad48c13 |
| ISSN | 1556-5297 |
| IngestDate | Sat Nov 29 02:47:36 EST 2025 Tue Nov 18 22:43:45 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1734-d3479e0434ea4a448dc1770f22589e1d9ab438d2124ea84bb23f752c93ad48c13 |
| OpenAccessLink | https://ojs.sin-chn.com/index.php/mcb/article/download/484/280 |
| ParticipantIDs | crossref_primary_10_62617_mcb484 crossref_citationtrail_10_62617_mcb484 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-18 |
| PublicationDateYYYYMMDD | 2024-11-18 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationTitle | Molecular & cellular biomechanics |
| PublicationYear | 2024 |
| SSID | ssj0041927 |
| Score | 2.345495 |
| Snippet | To explore the application of dynamic analysis algorithm in sports training injury risk assessment, this paper takes the Spatio-Temporal Graph Convolutional... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 484 |
| Title | Sports training injury risk assessment combined with dynamic analysis algorithm |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Biological Science Database (NC LIVE) customDbUrl: eissn: 1556-5300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041927 issn: 1556-5297 databaseCode: M7P dateStart: 20040101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1556-5300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041927 issn: 1556-5297 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1556-5300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041927 issn: 1556-5297 databaseCode: PIMPY dateStart: 20040101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT8IwFG8QNfFi_Iz4lR6MFzPdaEe3ozEaPIgkYoIn0m2dYGAQBIL_va9fY-JBPXhZxuN1gf669v3a94HQWeq5RNA0dngaRQ4NIx_ugPOwNOJhQniQuFwVm2CNRtBuh81S6d7Gwsz6LMuC-Twc_SvUIAOwZejsH-DOHwoCuAfQ4Qqww_VXwD_pQwBb--Gil71Bv2kfcp7n4ZS-5ECKrfN5ogvTX3Cbo4T3X4dj-GZQtF4fbC1dNWDknr_6oEL4ZQRxwXO-Ppyqc49urzs0iyNI21O1f_oyNWPSbDdUqYy7-zpD-jVgr9qp9lIUZMR1i9OqDnw2w4cU5kidvPTb3F2TueGhcwdxZDS-ZsdeWrVyX0JgMappRzdcQatVBixJeXE27aIsz7pVnR3763X8tGp4pRsWDJOChdHaQpuGGuBrDek2KolsB63rYqEfu-hRA4stsFgDiyWweAEstsBiCSw2wGILLM6B3UPPd7etm7pjymE4sccIdRIZ9CtcSqjglAOtTkDOXHiz_CAUXhLyiJIgAVsEFAIaRVWSMr8ah4QnNIg9so_K2TATBwgDp_dcwVxe4wzeTwZWm_B56HMBLIYHpILObV90YpMrXv67fmeptysI54ojnR5lWeXwZ5UjtLEYaseoPBlPxQlai2eT3vv4VAH5CZ42XR8 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sports+training+injury+risk+assessment+combined+with+dynamic+analysis+algorithm&rft.jtitle=Molecular+%26+cellular+biomechanics&rft.au=Hou%2C+Zhihong&rft.au=Xue%2C+Yuan&rft.date=2024-11-18&rft.issn=1556-5297&rft.eissn=1556-5300&rft.volume=21&rft.issue=3&rft.spage=484&rft_id=info:doi/10.62617%2Fmcb484&rft.externalDBID=n%2Fa&rft.externalDocID=10_62617_mcb484 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-5297&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-5297&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-5297&client=summon |