Quasisymmetric functions from combinatorial Hopf monoids and Ehrhart Theory

We investigate quasisymmetric functions coming from combinatorial Hopf monoids. We show that these invariants arise naturally in Ehrhart theory, and that some of their specializations are Hilbert functions for relative simplicial complexes. This class of complexes, called forbidden composition compl...

Full description

Saved in:
Bibliographic Details
Published in:Discrete mathematics and theoretical computer science Vol. DMTCS Proceedings, 28th...
Main Author: White, Jacob
Format: Journal Article Conference Proceeding
Language:English
Published: DMTCS 22.04.2020
Discrete Mathematics & Theoretical Computer Science
Subjects:
ISSN:1365-8050, 1462-7264, 1365-8050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate quasisymmetric functions coming from combinatorial Hopf monoids. We show that these invariants arise naturally in Ehrhart theory, and that some of their specializations are Hilbert functions for relative simplicial complexes. This class of complexes, called forbidden composition complexes, also forms a Hopf monoid, thus demonstrating a link between Hopf algebras, Ehrhart theory, and commutative algebra. We also study various specializations of quasisymmetric functions.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.6334