Symmetric Chain Decompositions and the Strong Sperner Property for Noncrossing Partition Lattices

We prove that the noncrossing partition lattices associated with the complex reflection groups G(d, d, n) for d, n ≥ 2 admit a decomposition into saturated chains that are symmetric about the middle ranks. A consequence of this result is that these lattices have the strong Sperner property, which as...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings, 28th...
Hlavní autor: Mühle, Henri
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: DMTCS 22.04.2020
Discrete Mathematics & Theoretical Computer Science
Témata:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We prove that the noncrossing partition lattices associated with the complex reflection groups G(d, d, n) for d, n ≥ 2 admit a decomposition into saturated chains that are symmetric about the middle ranks. A consequence of this result is that these lattices have the strong Sperner property, which asserts that the cardinality of the union of the k largest antichains does not exceed the sum of the k largest ranks for all k ≤ n. Subsequently, we use a computer to complete the proof that any noncrossing partition lattice associated with a well-generated complex reflection group is strongly Sperner, thus affirmatively answering a special case of a question of D. Armstrong. This was previously established only for the Coxeter groups of type A and B.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.6363