Analysis of the stochastic model “prey-migration area-predator-superpredator”

Current research areas of dynamic migration and population models include the analysis of trajectory dynamics and solving parametric optimization problems using computer methods. In this paper we consider the population model “prey-migration area-predator-superpredator”, which is given by a system o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete and continuous models and applied computational science Ročník 33; číslo 3; s. 272 - 283
Hlavní autoři: Vasilyeva, Irina I., Druzhinina, Olga V., Masina, Olga N., Demidova, Anastasia V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Peoples’ Friendship University of Russia (RUDN University) 15.10.2025
Témata:
ISSN:2658-4670, 2658-7149
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Current research areas of dynamic migration and population models include the analysis of trajectory dynamics and solving parametric optimization problems using computer methods. In this paper we consider the population model “prey-migration area-predator-superpredator”, which is given by a system of four differential equations. The model takes into account trophic interactions, intraspecific and interspecific competition, as well as migration of the prey to the refuge. Using differential evolution parameters are found that ensure the coexistence of populations of prey, predator and superpredator, respectively, in the main habitat and the existence of a population of prey in a refuge. The transition to stochastic variants of the model based on additive noise, multiplicative noise and the method of constructing self-consistent models is performed. To describe the structure of the stochastic model the Fokker-Planck equations are used and a transition to a system of equations in the Langevin form is performed. Numerical solution of stochastic systems of differential equations is implemented by the Euler-Maruyama method. Computer experiments are conducted using a Python software package, and trajectories for deterministic and stochastic cases are constructed. A comparative analysis of deterministic model and corresponding stochastic models is carried out. The results can be used in solving problems of mathematical modeling of biological, ecological, physical, chemical and demographic processes.
AbstractList Current research areas of dynamic migration and population models include the analysis of trajectory dynamics and solving parametric optimization problems using computer methods. In this paper we consider the population model “prey-migration area-predator-superpredator”, which is given by a system of four differential equations. The model takes into account trophic interactions, intraspecific and interspecific competition, as well as migration of the prey to the refuge. Using differential evolution parameters are found that ensure the coexistence of populations of prey, predator and superpredator, respectively, in the main habitat and the existence of a population of prey in a refuge. The transition to stochastic variants of the model based on additive noise, multiplicative noise and the method of constructing self-consistent models is performed. To describe the structure of the stochastic model the Fokker-Planck equations are used and a transition to a system of equations in the Langevin form is performed. Numerical solution of stochastic systems of differential equations is implemented by the Euler-Maruyama method. Computer experiments are conducted using a Python software package, and trajectories for deterministic and stochastic cases are constructed. A comparative analysis of deterministic model and corresponding stochastic models is carried out. The results can be used in solving problems of mathematical modeling of biological, ecological, physical, chemical and demographic processes.
Author Masina, Olga N.
Demidova, Anastasia V.
Vasilyeva, Irina I.
Druzhinina, Olga V.
Author_xml – sequence: 1
  givenname: Irina I.
  orcidid: 0000-0002-4120-2595
  surname: Vasilyeva
  fullname: Vasilyeva, Irina I.
  organization: Bunin Yelets State University
– sequence: 2
  givenname: Olga V.
  orcidid: 0000-0002-9242-9730
  surname: Druzhinina
  fullname: Druzhinina, Olga V.
  organization: Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
– sequence: 3
  givenname: Olga N.
  orcidid: 0000-0002-0934-7217
  surname: Masina
  fullname: Masina, Olga N.
  organization: Bunin Yelets State University
– sequence: 4
  givenname: Anastasia V.
  orcidid: 0000-0003-1000-9650
  surname: Demidova
  fullname: Demidova, Anastasia V.
  organization: RUDN University
BookMark eNo9kMtKBDEQRYMo-PyHXriNpqs6qTS4EfEFggi6DpXuRFtmJkPSLmbnh-jP-SX2jI_VrbpVXKrOvthepEUQ4rhWJwBo8BSMtrIxpCQo0BJRogQCCRa3xN5mSnXTbv_W681dcVTKq1IKLKFWZk88nC94tipDqVKsxpdQlTF1L1zGoavmqQ-z6uv9Y5nDSs6H58zjkBYV58By8noeU5blbRnyX_f1_nkodiLPSjj61QPxdHX5eHEj7-6vby_O72RX03QrtZ3xOtQUwde1tcb6fhIfW0YVjWHgiNxgT54oatt6sBGsQYWgG2I8ELc_uX3iV7fMw5zzyiUe3MZI-dlxnt6YBRc1gYnUE_V903hqlUbNTOStBc8wZZ39ZHU5lZJD_M-rldvQdmuGbs3QrWk7RDd5BG6ijd-FAnbN
Cites_doi 10.22363/2658-4670-2024-32-1-61-73
10.1007/978-3-319-39639-2_15
10.11948/2011013
10.1007/s12190-009-0351-5
10.25559/SITITO.020.202401.58-69
10.22363/26584670-2023-31-1-27-45
10.37394/232026.2024.6.17
10.1134/S0361768818020044
10.1142/S0218127423500347
10.1007/978-3-662-02452-2
10.1051/epjconf/202022602014
10.1142/S0218127423501791
10.3390/sym13112217
10.1080/21642583.2016.1241194
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.22363/2658-4670-2025-33-3-272-283
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2658-7149
EndPage 283
ExternalDocumentID oai_doaj_org_article_f5726f7d77dd44b790535aa77b882ba2
10_22363_2658_4670_2025_33_3_272_283
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
VCL
VIT
ID FETCH-LOGICAL-c1733-79c6b5e17f2b118868bd188bf9a30f66a2af3a43d7b77f589b28f2863032547a3
IEDL.DBID DOA
ISSN 2658-4670
IngestDate Mon Nov 03 22:03:12 EST 2025
Wed Nov 05 20:56:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1733-79c6b5e17f2b118868bd188bf9a30f66a2af3a43d7b77f589b28f2863032547a3
ORCID 0000-0002-0934-7217
0000-0002-9242-9730
0000-0002-4120-2595
0000-0003-1000-9650
OpenAccessLink https://doaj.org/article/f5726f7d77dd44b790535aa77b882ba2
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_f5726f7d77dd44b790535aa77b882ba2
crossref_primary_10_22363_2658_4670_2025_33_3_272_283
PublicationCentury 2000
PublicationDate 2025-10-15
PublicationDateYYYYMMDD 2025-10-15
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Discrete and continuous models and applied computational science
PublicationYear 2025
Publisher Peoples’ Friendship University of Russia (RUDN University)
Publisher_xml – name: Peoples’ Friendship University of Russia (RUDN University)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.22363/2658-4670-2024-32-1-61-73
– ident: ref12
  doi: 10.1007/978-3-319-39639-2_15
– ident: ref6
  doi: 10.11948/2011013
– ident: ref7
  doi: 10.1007/s12190-009-0351-5
– ident: ref19
  doi: 10.25559/SITITO.020.202401.58-69
– ident: ref9
  doi: 10.22363/26584670-2023-31-1-27-45
– ident: ref4
  doi: 10.37394/232026.2024.6.17
– ident: ref3
  doi: 10.37394/232026.2024.6.17
– ident: ref16
  doi: 10.1134/S0361768818020044
– ident: ref1
  doi: 10.1142/S0218127423500347
– ident: ref18
– ident: ref14
  doi: 10.1007/978-3-662-02452-2
– ident: ref13
  doi: 10.1051/epjconf/202022602014
– ident: ref11
– ident: ref17
– ident: ref2
  doi: 10.1142/S0218127423501791
– ident: ref15
– ident: ref5
  doi: 10.3390/sym13112217
– ident: ref8
  doi: 10.1080/21642583.2016.1241194
SSID ssj0002873506
ssib050730783
Score 2.3060858
Snippet Current research areas of dynamic migration and population models include the analysis of trajectory dynamics and solving parametric optimization problems...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 272
SubjectTerms differential evolution
method of constructing self-consistent models
migration flows
stochastization
system of differential equations
Title Analysis of the stochastic model “prey-migration area-predator-superpredator”
URI https://doaj.org/article/f5726f7d77dd44b790535aa77b882ba2
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2658-7149
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002873506
  issn: 2658-4670
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2658-7149
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050730783
  issn: 2658-4670
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kiOhBfGJ9kUOvS5N9ZDZHFYsHKQoqvS27SVYr2JY-PPeH6J_rL3F205Z48uIpZCBh-b5hZyY7-YaQlrIY5mTJaOYyR4WQBTWxsFQJF2c2zmUSTkxf7qHbVb1e9lAb9eV7wip54Aq4tpPAUgcFQFEIYb2eFJfGAFjMDa0Ju28MWa2YQk-S3nFX51Pv4RMScBkGbTIMuRR3h3iLtHwfNOMpb6-N6DRMUs4ppwz8f8v8V7yqyfqH-NPZI7vLxDG6qha8TzbKwQHZqckJHpLHlcJINHQRJnYRJnb5m_FKzFGYeBMt5l8j5I5-9F8r5iODSSNFW-GLbzqZjUILYrhbzL-PyHPn9unmji5HJtA8AVw2ZHlqZZmAYxZLB5UqW-DFuszw2KWpYcZxI3gBFsBJlVmmHFMpBjKsFMHwY9IYDAflCYlYiqWTUdzJEoRNjBLKiULGxgsoGpk3iVwBo0eVMobGiiIAqj2g2gOqPaCac402YBoBbZJrj-L6Ga9vHQzIul6yrv9i_fQ_XnJGtgPdvj9FnpPGdDwrL8hm_jntT8aXwaF-ABEEyTo
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+stochastic+model+%E2%80%9Cprey-migration+area-predator-superpredator%E2%80%9D&rft.jtitle=Discrete+and+continuous+models+and+applied+computational+science&rft.au=Vasilyeva%2C+Irina+I.&rft.au=Druzhinina%2C+Olga+V.&rft.au=Masina%2C+Olga+N.&rft.au=Demidova%2C+Anastasia+V.&rft.date=2025-10-15&rft.issn=2658-4670&rft.eissn=2658-7149&rft.volume=33&rft.issue=3&rft.spage=272&rft.epage=283&rft_id=info:doi/10.22363%2F2658-4670-2025-33-3-272-283&rft.externalDBID=n%2Fa&rft.externalDocID=10_22363_2658_4670_2025_33_3_272_283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2658-4670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2658-4670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2658-4670&client=summon