Molecular genetic methods for quality control of inactivated vaccines using a Chikungunya virus model: vaccine strain identification and completeness of virus inactivation

INTRODUCTION. The completeness of virus inactivation and the identity of the vaccine strain are essential parameters for the safety and quality of inactivated virus vaccines, which should be controlled during vaccine development and production. Currently, the most promising quality control methods f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biopreparaty Jg. 24; H. 3; S. 279 - 293
Hauptverfasser: Oksanich, A. S., Samartseva, T. G., Kaa, K. V., Otrashevskaia, E. V., Krasko, A. G., Laputina, A. G., Netesova, N. A., Ignatyev, G. M.
Format: Magazine Article
Sprache:Englisch
Russisch
Veröffentlicht: Ministry of Health of the Russian Federation. Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products 03.10.2024
Schlagworte:
ISSN:2221-996X, 2619-1156
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract INTRODUCTION. The completeness of virus inactivation and the identity of the vaccine strain are essential parameters for the safety and quality of inactivated virus vaccines, which should be controlled during vaccine development and production. Currently, the most promising quality control methods for inactivated virus vaccines are molecular genetic methods, which provide rapid results with high sensitivity and specificity. AIM . The aim of this study was the development of a real-time quantitative polymerase chain reaction (qPCR) method and an integrated cell culture real-time quantitative polymerase chain reaction (ICC-qPCR) method to assess the completeness of virus inactivation, as well as a reverse-transcription polymerase chain reaction assay coupled with restriction fragment length polymorphism analysis (RT-PCR-RFLP) to confirm the identity of the vaccine virus strain. MATERIALS AND METHODS . This study used RNA of CHIKV genotypes (three strains of each of the four CHIKV genotypes, including Asian, West African (WAf), and East/Central/South African (ECSA) genotypes, and the Indian Ocean Lineage of the ECSA genotype (ECSA-IOL), which were identified by sequencing prior to analysis). Additionally, the study used the Nika21 CHIKV strain (ECSA genotype), the Nika21 CHIKV strain inactivated with β-propiolactone, and the Nika21 CHIKV strain antigen adsorbed on aluminium hydroxide. The methods used included real-time qPCR, RT-PCR-RFLP, and virus neutralisation. RESULTS. The study identified a 218 bp fragment of the nsP1 gene (positions 789 to 1006) with restriction endonuclease recognition sites. These sites were present or absent in combinations specific to each of the four CHIKV genotypes. The authors selected primers for amplification of the specified gene region and tested the conditions for real-time qPCR and RT-PCR-RFLP. The study demonstrated the possibility of using the ICC-qPCR method to confirm the completeness of virus inactivation and the RT-PCR-RFLP method to identify the vaccine strain. CONCLUSIONS . The study showed the advantages of using the ICC-qPCR method to confirm the completeness of antigen inactivation and the RT-PCR-RFLP method to identify the vaccine strain. These methods are more sensitive and faster than traditional culture methods. ICC-qPCR and RT-PCR-RFLP can be used at any stage of the production process for inactivated vaccines.
AbstractList INTRODUCTION. The completeness of virus inactivation and the identity of the vaccine strain are essential parameters for the safety and quality of inactivated virus vaccines, which should be controlled during vaccine development and production. Currently, the most promising quality control methods for inactivated virus vaccines are molecular genetic methods, which provide rapid results with high sensitivity and specificity. AIM . The aim of this study was the development of a real-time quantitative polymerase chain reaction (qPCR) method and an integrated cell culture real-time quantitative polymerase chain reaction (ICC-qPCR) method to assess the completeness of virus inactivation, as well as a reverse-transcription polymerase chain reaction assay coupled with restriction fragment length polymorphism analysis (RT-PCR-RFLP) to confirm the identity of the vaccine virus strain. MATERIALS AND METHODS . This study used RNA of CHIKV genotypes (three strains of each of the four CHIKV genotypes, including Asian, West African (WAf), and East/Central/South African (ECSA) genotypes, and the Indian Ocean Lineage of the ECSA genotype (ECSA-IOL), which were identified by sequencing prior to analysis). Additionally, the study used the Nika21 CHIKV strain (ECSA genotype), the Nika21 CHIKV strain inactivated with β-propiolactone, and the Nika21 CHIKV strain antigen adsorbed on aluminium hydroxide. The methods used included real-time qPCR, RT-PCR-RFLP, and virus neutralisation. RESULTS. The study identified a 218 bp fragment of the nsP1 gene (positions 789 to 1006) with restriction endonuclease recognition sites. These sites were present or absent in combinations specific to each of the four CHIKV genotypes. The authors selected primers for amplification of the specified gene region and tested the conditions for real-time qPCR and RT-PCR-RFLP. The study demonstrated the possibility of using the ICC-qPCR method to confirm the completeness of virus inactivation and the RT-PCR-RFLP method to identify the vaccine strain. CONCLUSIONS . The study showed the advantages of using the ICC-qPCR method to confirm the completeness of antigen inactivation and the RT-PCR-RFLP method to identify the vaccine strain. These methods are more sensitive and faster than traditional culture methods. ICC-qPCR and RT-PCR-RFLP can be used at any stage of the production process for inactivated vaccines.
INTRODUCTION. The completeness of virus inactivation and the identity of the vaccine strain are essential parameters for the safety and quality of inactivated virus vaccines, which should be controlled during vaccine development and production. Currently, the most promising quality control methods for inactivated virus vaccines are molecular genetic methods, which provide rapid results with high sensitivity and specificity.AIM. The aim of this study was the development of a real-time quantitative polymerase chain reaction (qPCR) method and an integrated cell culture real-time quantitative polymerase chain reaction (ICC-qPCR) method to assess the completeness of virus inactivation, as well as a reverse-transcription polymerase chain reaction assay coupled with restriction fragment length polymorphism analysis (RT-PCR-RFLP) to confirm the identity of the vaccine virus strain.MATERIALS AND METHODS. This study used RNA of CHIKV genotypes (three strains of each of the four CHIKV genotypes, including Asian, West African (WAf), and East/Central/South African (ECSA) genotypes, and the Indian Ocean Lineage of the ECSA genotype (ECSA-IOL), which were identified by sequencing prior to analysis). Additionally, the study used the Nika21 CHIKV strain (ECSA genotype), the Nika21 CHIKV strain inactivated with β-propiolactone, and the Nika21 CHIKV strain antigen adsorbed on aluminium hydroxide. The methods used included real-time qPCR, RT-PCR-RFLP, and virus neutralisation.RESULTS. The study identified a 218 bp fragment of the nsP1 gene (positions 789 to 1006) with restriction endonuclease recognition sites. These sites were present or absent in combinations specific to each of the four CHIKV genotypes. The authors selected primers for amplification of the specified gene region and tested the conditions for real-time qPCR and RT-PCR-RFLP. The study demonstrated the possibility of using the ICC-qPCR method to confirm the completeness of virus inactivation and the RT-PCR-RFLP method to identify the vaccine strain.CONCLUSIONS. The study showed the advantages of using the ICC-qPCR method to confirm the completeness of antigen inactivation and the RT-PCR-RFLP method to identify the vaccine strain. These methods are more sensitive and faster than traditional culture methods. ICC-qPCR and RT-PCR-RFLP can be used at any stage of the production process for inactivated vaccines.
Author Oksanich, A. S.
Kaa, K. V.
Samartseva, T. G.
Laputina, A. G.
Netesova, N. A.
Otrashevskaia, E. V.
Ignatyev, G. M.
Krasko, A. G.
Author_xml – sequence: 1
  givenname: A. S.
  orcidid: 0000-0002-8600-7347
  surname: Oksanich
  fullname: Oksanich, A. S.
  organization: I. Mechnikov Research Institute of Vaccines and Sera
– sequence: 2
  givenname: T. G.
  orcidid: 0000-0003-3264-6722
  surname: Samartseva
  fullname: Samartseva, T. G.
  organization: I. Mechnikov Research Institute of Vaccines and Sera
– sequence: 3
  givenname: K. V.
  orcidid: 0000-0002-8446-1853
  surname: Kaa
  fullname: Kaa, K. V.
  organization: Centre for Strategic Planning and Management of Biomedical Health Risks
– sequence: 4
  givenname: E. V.
  orcidid: 0000-0002-2491-4072
  surname: Otrashevskaia
  fullname: Otrashevskaia, E. V.
  organization: I. Mechnikov Research Institute of Vaccines and Sera
– sequence: 5
  givenname: A. G.
  orcidid: 0000-0002-2765-3525
  surname: Krasko
  fullname: Krasko, A. G.
  organization: Republican Research and Practical Center for Epidemiology and Microbiology
– sequence: 6
  givenname: A. G.
  orcidid: 0009-0006-7527-6951
  surname: Laputina
  fullname: Laputina, A. G.
  organization: I. Mechnikov Research Institute of Vaccines and Sera
– sequence: 7
  givenname: N. A.
  orcidid: 0000-0002-9896-5403
  surname: Netesova
  fullname: Netesova, N. A.
  organization: State Research Center of Virology and Biotechnology “Vector”
– sequence: 8
  givenname: G. M.
  orcidid: 0000-0002-9731-3681
  surname: Ignatyev
  fullname: Ignatyev, G. M.
  organization: I. Mechnikov Research Institute of Vaccines and Sera; Saint Petersburg Scientific Research Institute of Vaccines and Serums and the Enterprise for the Production of Bacterial Preparations
BookMark eNo9kd9uFCEUxiemJtbad-DCW5Q_M8NgvDEbrU1qelMT78gZOGyps1CB2WSfyZeU7domJ4FwPr6Pw-9tdxZTxK57z9kHySY9fBRCcKr1-IsKJnraSlKhNBVavurOxcg15XwYz9r-WfmmuyzlgTEmJjWOWp93f3-kBe26QCZbjFiDJTus98kV4lMmf1ZYQj0Qm2LNaSHJkxDB1rCHio7swdoQsZC1hLglQDb34fcat2s8ANmHvBaySw6XT89KUmqGEElwGGvwwUINKRKIrkXsHhes7RGlHHNO11_Smuxd99rDUvDy_3rR_fz29W7znd7cXl1vvtxQy5WUVHLu5QTz0KaeEL1TsxCo5lnhgCCAtbabNI5OMQcSJzeInjmvHJM9n5S86K5Pvi7Bg3nMYQf5YBIE83SQ8tZAbj-1oMEevGSsB9VDz8WseztLNzM1DxOT1javzycvm1MpGf2LH2fmiaM50jFHOubI0bSSpnE0jaP8B2V5mPI
Cites_doi 10.36233/0372-9311-2020-97-2-182-189
10.1016/j.scitotenv.2018.04.223
10.1080/10934529.2015.1019795
10.3390/pathogens10050626
10.1128/JCM.38.9.3156-3160.2000
10.1016/j.jviromet.2018.05.008
10.1128/AEM.66.5.2267-2268.2000
10.1016/j.vaccine.2012.07.072
10.30895/2221-996X-2023-23-1-111-120
10.30895/2221-996X-2022-22-4-405-413
10.1385/1-59259-766-1:069
10.1186/1743-422X-6-149
10.36233/0372-9311-2019-4-38-46
10.1016/j.vaccine.2009.07.095
10.3389/fimmu.2020.00592
10.36233/0372-9311-196
10.1016/j.mimet.2010.04.003
10.1016/j.jviromet.2019.04.025
10.1016/j.vaccine.2009.02.062
10.30895/2221-996X-2020-20-2-107-115
10.36233/0372-9311-159
10.3382/ps.2013-03134
10.1016/j.jhin.2022.04.008
10.30895/2221-996X-2023-23-1-42-64
10.1371/journal.pntd.0008142
10.1007/82_2018_146
10.1016/j.jviromet.2006.10.001
ContentType Magazine Article
DBID AAYXX
CITATION
DOA
DOI 10.30895/2221-996X-2024-24-3-279-293
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2619-1156
EndPage 293
ExternalDocumentID oai_doaj_org_article_e4af3004a74a412b94cb3db07b5803cc
10_30895_2221_996X_2024_24_3_279_293
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c1733-311f38ab52218eefd7b22e7bb7e5ea2a01f3d89e6d70da3e8d5240df7d0341873
IEDL.DBID DOA
ISSN 2221-996X
IngestDate Fri Oct 03 12:50:52 EDT 2025
Sat Nov 29 05:35:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
Russian
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1733-311f38ab52218eefd7b22e7bb7e5ea2a01f3d89e6d70da3e8d5240df7d0341873
ORCID 0000-0002-8446-1853
0000-0002-9731-3681
0000-0002-9896-5403
0000-0003-3264-6722
0000-0002-8600-7347
0000-0002-2491-4072
0000-0002-2765-3525
0009-0006-7527-6951
OpenAccessLink https://doaj.org/article/e4af3004a74a412b94cb3db07b5803cc
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_e4af3004a74a412b94cb3db07b5803cc
crossref_primary_10_30895_2221_996X_2024_24_3_279_293
PublicationCentury 2000
PublicationDate 2024-10-03
PublicationDateYYYYMMDD 2024-10-03
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-03
  day: 03
PublicationDecade 2020
PublicationTitle Biopreparaty
PublicationYear 2024
Publisher Ministry of Health of the Russian Federation. Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products
Publisher_xml – name: Ministry of Health of the Russian Federation. Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.36233/0372-9311-2020-97-2-182-189
– ident: ref3
– ident: ref10
  doi: 10.1016/j.scitotenv.2018.04.223
– ident: ref28
  doi: 10.1080/10934529.2015.1019795
– ident: ref4
  doi: 10.3390/pathogens10050626
– ident: ref22
– ident: ref14
  doi: 10.1128/JCM.38.9.3156-3160.2000
– ident: ref27
  doi: 10.1016/j.jviromet.2018.05.008
– ident: ref11
  doi: 10.1128/AEM.66.5.2267-2268.2000
– ident: ref20
  doi: 10.1016/j.vaccine.2012.07.072
– ident: ref23
  doi: 10.30895/2221-996X-2023-23-1-111-120
– ident: ref25
  doi: 10.30895/2221-996X-2022-22-4-405-413
– ident: ref15
– ident: ref30
– ident: ref7
  doi: 10.1385/1-59259-766-1:069
– ident: ref9
  doi: 10.1186/1743-422X-6-149
– ident: ref12
  doi: 10.36233/0372-9311-2019-4-38-46
– ident: ref29
  doi: 10.1016/j.vaccine.2009.07.095
– ident: ref18
  doi: 10.3389/fimmu.2020.00592
– ident: ref21
  doi: 10.36233/0372-9311-196
– ident: ref5
  doi: 10.1016/j.mimet.2010.04.003
– ident: ref1
  doi: 10.1016/j.jviromet.2019.04.025
– ident: ref19
  doi: 10.1016/j.vaccine.2009.02.062
– ident: ref16
  doi: 10.30895/2221-996X-2020-20-2-107-115
– ident: ref24
  doi: 10.36233/0372-9311-159
– ident: ref31
  doi: 10.3382/ps.2013-03134
– ident: ref8
  doi: 10.1016/j.jhin.2022.04.008
– ident: ref17
  doi: 10.30895/2221-996X-2023-23-1-42-64
– ident: ref2
  doi: 10.1371/journal.pntd.0008142
– ident: ref26
  doi: 10.1007/82_2018_146
– ident: ref6
  doi: 10.1016/j.jviromet.2006.10.001
SSID ssj0002876699
Score 1.3648255
Snippet INTRODUCTION. The completeness of virus inactivation and the identity of the vaccine strain are essential parameters for the safety and quality of inactivated...
INTRODUCTION. The completeness of virus inactivation and the identity of the vaccine strain are essential parameters for the safety and quality of inactivated...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 279
SubjectTerms chikungunya virus
integrated cell culture quantitative pcr
restriction fragment length polymorphism method
reverse transcription polymerase chain reaction
Title Molecular genetic methods for quality control of inactivated vaccines using a Chikungunya virus model: vaccine strain identification and completeness of virus inactivation
URI https://doaj.org/article/e4af3004a74a412b94cb3db07b5803cc
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYllNJTXylJX8wh5BQRW4-V3FsbGnpp2EMCexOSJSVOwSnr7ML-pv7Jzsi7m80pl4JOsmQbf4NmZM18H2NHQuqWeMq51MFwJVPiXgXPZaZjmGxDJUIRmzAXF3Y2a6Y7Ul-UEzbSA48f7jQpn4kVyhvlVS1Co9ogY6hM0LaSbUurb2Wanc3UbfllZCaTIh6J_q_mGNTPXrAj2qJWttGn2040EqE4NsmFabho5CP_tEPjX_zN-Wv2akP8DN_GN3zDns0Xb9nxdKSaXp3A5UPl1HACxzB9IKFevWN_f210bwFNhCoVYRSLHgDDVBhrKVewzlSHuwxdTzUOS4w9Iyx9SwfuA1Ba_DV4OLvpfuOysOhXHpbdfDFAkdD5uhkJQ9GagC6us48K4OD7CCVpnUJzXFPpOeP07dNw2D67Ov9xefaTr4UZeFsbSfV4dZbWB4zdaptSjiYIkUwIJunkha_wcrRNmkRTRS-TjRoDh5hNrNBpWiPfs73-rk8HDEQUIsScdc5RaRGbKL1udahVQkcp6kOmN3C4PyP_hsN9S4HREYyOYHQEo8MmHcLoEMZD9p2w284hFu3Sgbbl1rblnrKtD__jJh_Zy2JklHQgP7G9-_kifWbP2-V9N8y_FLP9B2u48xc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+genetic+methods+for+quality+control+of+inactivated+vaccines+using+a+Chikungunya+virus+model%3A+vaccine+strain+identification+and+completeness+of+virus+inactivation&rft.jtitle=Biopreparaty&rft.au=A.+S.+Oksanich&rft.au=T.+G.+Samartseva&rft.au=K.+V.+Kaa&rft.au=E.+V.+Otrashevskaia&rft.date=2024-10-03&rft.pub=Ministry+of+Health+of+the+Russian+Federation.+Federal+State+Budgetary+Institution+%C2%ABScientific+Centre+for+Expert+Evaluation+of+Medicinal+Products&rft.issn=2221-996X&rft.eissn=2619-1156&rft.volume=24&rft.issue=3&rft.spage=279&rft.epage=293&rft_id=info:doi/10.30895%2F2221-996X-2024-24-3-279-293&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e4af3004a74a412b94cb3db07b5803cc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2221-996X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2221-996X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2221-996X&client=summon