GL(n, q)-analogues of factorization problems in the symmetric group
We consider GLn (Fq)-analogues of certain factorization problems in the symmetric group Sn: ratherthan counting factorizations of the long cycle(1,2, . . . , n) given the number of cycles of each factor, we countfactorizations of a regular elliptic element given the fixed space dimension of each fac...
Uloženo v:
| Vydáno v: | Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings, 28th... |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
DMTCS
22.04.2020
Discrete Mathematics & Theoretical Computer Science |
| Témata: | |
| ISSN: | 1365-8050, 1462-7264, 1365-8050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider GLn (Fq)-analogues of certain factorization problems in the symmetric group Sn: ratherthan counting factorizations of the long cycle(1,2, . . . , n) given the number of cycles of each factor, we countfactorizations of a regular elliptic element given the fixed space dimension of each factor. We show that, as in Sn, the generating function counting these factorizations has attractive coefficients after an appropriate change of basis.Our work generalizes several recent results on factorizations in GLn (Fq) and also uses a character-based approach.We end with an asymptotic application and some questions. |
|---|---|
| ISSN: | 1365-8050 1462-7264 1365-8050 |
| DOI: | 10.46298/dmtcs.6382 |