The colored symmetric and exterior algebras

In this extended abstract we present colored generalizations of the symmetric algebra and its Koszul dual, the exterior algebra. The symmetric group Sn acts on the multilinear components of these algebras. While Sn acts trivially on the multilinear components of the colored symmetric algebra, we use...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings, 28th...
Hlavní autor: Gonzalez D'Leon, Rafael S.
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: DMTCS 22.04.2020
Discrete Mathematics & Theoretical Computer Science
Témata:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this extended abstract we present colored generalizations of the symmetric algebra and its Koszul dual, the exterior algebra. The symmetric group Sn acts on the multilinear components of these algebras. While Sn acts trivially on the multilinear components of the colored symmetric algebra, we use poset topology techniques to describe the representation on its Koszul dual. We introduce an Sn-poset of weighted subsets that we call the weighted boolean algebra and we prove that the multilinear components of the colored exterior algebra are Sn- isomorphic to the top cohomology modules of its maximal intervals. We show that the two colored Koszul dual algebras are Koszul in the sense of Priddy et al.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.6342