On the algebraic properties of difference approximations of Hamiltonian systems

In this paper, we examine difference approximations for dynamic systems characterized by polynomial Hamiltonians, specifically focusing on cases where these approximations establish birational correspondences between the initial and final states of the system. Difference approximations are commonly...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete and continuous models and applied computational science Ročník 33; číslo 3; s. 260 - 271
Hlavní autoři: Lapshenkova, Lyubov O., Malykh, Mikhail D., Matyukhina, Elena N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Peoples’ Friendship University of Russia (RUDN University) 15.10.2025
Témata:
ISSN:2658-4670, 2658-7149
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we examine difference approximations for dynamic systems characterized by polynomial Hamiltonians, specifically focusing on cases where these approximations establish birational correspondences between the initial and final states of the system. Difference approximations are commonly used numerical methods for simulating the evolution of complex systems, and when applied to Hamiltonian dynamics, they present unique algebraic properties due to the polynomial structure of the Hamiltonian. Our approach involves analyzing the conditions under which these approximations preserve key features of the Hamiltonian system, such as energy conservation and phase-space volume preservation. By investigating the algebraic structure of the birational mappings induced by these approximations, we aim to provide insights into the stability and accuracy of numerical simulations in identifying the true behavior of Hamiltonian systems. The results offer a framework for designing efficient and accurate numerical schemes that retain essential properties of polynomial Hamiltonian systems over time.
AbstractList In this paper, we examine difference approximations for dynamic systems characterized by polynomial Hamiltonians, specifically focusing on cases where these approximations establish birational correspondences between the initial and final states of the system. Difference approximations are commonly used numerical methods for simulating the evolution of complex systems, and when applied to Hamiltonian dynamics, they present unique algebraic properties due to the polynomial structure of the Hamiltonian. Our approach involves analyzing the conditions under which these approximations preserve key features of the Hamiltonian system, such as energy conservation and phase-space volume preservation. By investigating the algebraic structure of the birational mappings induced by these approximations, we aim to provide insights into the stability and accuracy of numerical simulations in identifying the true behavior of Hamiltonian systems. The results offer a framework for designing efficient and accurate numerical schemes that retain essential properties of polynomial Hamiltonian systems over time.
Author Malykh, Mikhail D.
Lapshenkova, Lyubov O.
Matyukhina, Elena N.
Author_xml – sequence: 1
  givenname: Lyubov O.
  orcidid: 0000-0002-1053-4925
  surname: Lapshenkova
  fullname: Lapshenkova, Lyubov O.
  organization: RUDN University
– sequence: 2
  givenname: Mikhail D.
  orcidid: 0000-0001-6541-6603
  surname: Malykh
  fullname: Malykh, Mikhail D.
  organization: RUDN University, Joint Institute for Nuclear Research
– sequence: 3
  givenname: Elena N.
  surname: Matyukhina
  fullname: Matyukhina, Elena N.
  organization: RUDN University
BookMark eNo9UMtOwzAQtBBIlNJ_yIFrwG8nEhdUAa1UqRc4W469LqnSOLJzoH-Pk1acdueh0e48oNs-9IDQE8HPlDLJXqgUVcmlwiXFVJSMlaykMiNFbtBiVhXh9e11n5z3aJXSEWNMK8UElgu03_fF-AOF6Q7QRNPaYohhgDi2kIrgC9d6DxF6my1Dln7bkxnb0M_ixpzabgx9a_oindMIp_SI7rzpEqyuc4m-P96_1ptyt__crt92pSWKkVI5I410Qiow0nrRcADJvDSVaIQj4GsnmFFY1bwBAxZwdipLso2zBnu2RNtLrgvmqIeYz4pnHUyrZyLEgzb5CduBrjzxTnFfUyJ4o3AjbWWY59RWllWNy1mvlywbQ0oR_H8ewXruWk8N6qlBPXWtGdMTl5Ei7A-g5nY5
Cites_doi 10.23967/wccm-eccomas.2020.331
10.1137/S0036142900366583
10.1088/1751-8113/47/36/365202
10.1137/0728058
10.3390/math12172725
10.1086/117903
10.1002/9780470753767
10.1017/S0962492904000010
10.1007/978-3-030-85550-5_8
10.3390/math12010167
10.1006/jcph.2001.6771
10.1201/9780429500442
10.1098/rspa.2018.0761
10.1017/S096249290500008X
10.1070/IM1991v040n03ABEH002018
10.1090/mcom/3921
10.1145/363707.363723
10.1017/S0962492902000075
10.1017/CBO9780511614118
10.1023/A:1026619524037
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.22363/2658-4670-2025-33-3-260-271
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2658-7149
EndPage 271
ExternalDocumentID oai_doaj_org_article_8f1fd74f92154b70b6c8a3f42c8c38bd
10_22363_2658_4670_2025_33_3_260_271
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
VCL
VIT
ID FETCH-LOGICAL-c1731-7da6a6d567ea6cf5b4ee63f6a85b5d1ef9d53a70794beaece067e7c14ee43b0f3
IEDL.DBID DOA
ISSN 2658-4670
IngestDate Mon Nov 03 22:03:12 EST 2025
Wed Nov 05 20:56:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1731-7da6a6d567ea6cf5b4ee63f6a85b5d1ef9d53a70794beaece067e7c14ee43b0f3
ORCID 0000-0001-6541-6603
0000-0002-1053-4925
OpenAccessLink https://doaj.org/article/8f1fd74f92154b70b6c8a3f42c8c38bd
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_8f1fd74f92154b70b6c8a3f42c8c38bd
crossref_primary_10_22363_2658_4670_2025_33_3_260_271
PublicationCentury 2000
PublicationDate 2025-10-15
PublicationDateYYYYMMDD 2025-10-15
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Discrete and continuous models and applied computational science
PublicationYear 2025
Publisher Peoples’ Friendship University of Russia (RUDN University)
Publisher_xml – name: Peoples’ Friendship University of Russia (RUDN University)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.23967/wccm-eccomas.2020.331
– ident: ref24
  doi: 10.1137/S0036142900366583
– ident: ref5
– ident: ref20
– ident: ref21
  doi: 10.1088/1751-8113/47/36/365202
– ident: ref2
  doi: 10.1137/0728058
– ident: ref11
– ident: ref15
– ident: ref22
  doi: 10.3390/math12172725
– ident: ref3
  doi: 10.1086/117903
– ident: ref1
  doi: 10.1002/9780470753767
– ident: ref25
  doi: 10.1017/S0962492904000010
– ident: ref19
  doi: 10.1007/978-3-030-85550-5_8
– ident: ref12
  doi: 10.3390/math12010167
– ident: ref9
  doi: 10.1006/jcph.2001.6771
– ident: ref13
  doi: 10.1201/9780429500442
– ident: ref17
  doi: 10.1098/rspa.2018.0761
– ident: ref7
  doi: 10.1017/S096249290500008X
– ident: ref8
  doi: 10.1070/IM1991v040n03ABEH002018
– ident: ref16
  doi: 10.1090/mcom/3921
– ident: ref18
  doi: 10.1145/363707.363723
– ident: ref23
  doi: 10.1017/S0962492902000075
– ident: ref4
  doi: 10.1017/CBO9780511614118
– ident: ref10
– ident: ref26
  doi: 10.1023/A:1026619524037
– ident: ref14
SSID ssj0002873506
ssib050730783
Score 2.306602
Snippet In this paper, we examine difference approximations for dynamic systems characterized by polynomial Hamiltonians, specifically focusing on cases where these...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 260
SubjectTerms appelroth quadratization
birational map
hamiltonian system
kahan method
Title On the algebraic properties of difference approximations of Hamiltonian systems
URI https://doaj.org/article/8f1fd74f92154b70b6c8a3f42c8c38bd
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2658-7149
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002873506
  issn: 2658-4670
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2658-7149
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050730783
  issn: 2658-4670
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLUQQggGxFOUlzJ0tRrHr3gERNWpZQCpmxW_pDK0VVsQn8-9TluViYUxjmNF5175HjvOOYR0YyWAtAZNfZUMFbIJ1HlTotcLY65KySSRzSb0cFiPx-Z1x-oLz4S18sAtcL06sRS0SAZqk3C6dMrXDU-i8rXntQs4-5ba7CymIJMkJu7m-9RH3kLSXGajzQpKLoXZoTwkXTwHXXHFe9tGSJpKUs4pp0D0aaXZr3q1I-uf60__lJysiWPx2L7wGdmL03NyvCMneEFGo2kBfK5A6w5YBE98Mcet9gVqphazVGzMUDx0QSnx70n732K-OcCdDiCCkC5FK--8vCTv_Ze35wFdGyZQzzRnVIdGNSpIpWOjfJJOxKh4Uk0tnQwsJhMkb1ATT7jYRB-hVEXtGXQT3JWJX5H96Wwar0mRnAEi6YPXUOODSsBadIJxtDO8Vkp3iNzAYuetLoaF9USG0yKcFuG0CKfl3GIbXGnWIU-I4fYZVLfODRBzu465_SvmN_8xyC05ysHG0ynyjuyvFp_xnhz4r9VkuXjI6fQD2-nJ6Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+algebraic+properties+of+difference+approximations+of+Hamiltonian+systems&rft.jtitle=Discrete+and+continuous+models+and+applied+computational+science&rft.au=Lapshenkova%2C+Lyubov+O.&rft.au=Malykh%2C+Mikhail+D.&rft.au=Matyukhina%2C+Elena+N.&rft.date=2025-10-15&rft.issn=2658-4670&rft.eissn=2658-7149&rft.volume=33&rft.issue=3&rft.spage=260&rft.epage=271&rft_id=info:doi/10.22363%2F2658-4670-2025-33-3-260-271&rft.externalDBID=n%2Fa&rft.externalDocID=10_22363_2658_4670_2025_33_3_260_271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2658-4670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2658-4670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2658-4670&client=summon