On the algebraic properties of difference approximations of Hamiltonian systems
In this paper, we examine difference approximations for dynamic systems characterized by polynomial Hamiltonians, specifically focusing on cases where these approximations establish birational correspondences between the initial and final states of the system. Difference approximations are commonly...
Saved in:
| Published in: | Discrete and continuous models and applied computational science Vol. 33; no. 3; pp. 260 - 271 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Peoples’ Friendship University of Russia (RUDN University)
15.10.2025
|
| Subjects: | |
| ISSN: | 2658-4670, 2658-7149 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we examine difference approximations for dynamic systems characterized by polynomial Hamiltonians, specifically focusing on cases where these approximations establish birational correspondences between the initial and final states of the system. Difference approximations are commonly used numerical methods for simulating the evolution of complex systems, and when applied to Hamiltonian dynamics, they present unique algebraic properties due to the polynomial structure of the Hamiltonian. Our approach involves analyzing the conditions under which these approximations preserve key features of the Hamiltonian system, such as energy conservation and phase-space volume preservation. By investigating the algebraic structure of the birational mappings induced by these approximations, we aim to provide insights into the stability and accuracy of numerical simulations in identifying the true behavior of Hamiltonian systems. The results offer a framework for designing efficient and accurate numerical schemes that retain essential properties of polynomial Hamiltonian systems over time. |
|---|---|
| AbstractList | In this paper, we examine difference approximations for dynamic systems characterized by polynomial Hamiltonians, specifically focusing on cases where these approximations establish birational correspondences between the initial and final states of the system. Difference approximations are commonly used numerical methods for simulating the evolution of complex systems, and when applied to Hamiltonian dynamics, they present unique algebraic properties due to the polynomial structure of the Hamiltonian. Our approach involves analyzing the conditions under which these approximations preserve key features of the Hamiltonian system, such as energy conservation and phase-space volume preservation. By investigating the algebraic structure of the birational mappings induced by these approximations, we aim to provide insights into the stability and accuracy of numerical simulations in identifying the true behavior of Hamiltonian systems. The results offer a framework for designing efficient and accurate numerical schemes that retain essential properties of polynomial Hamiltonian systems over time. |
| Author | Malykh, Mikhail D. Lapshenkova, Lyubov O. Matyukhina, Elena N. |
| Author_xml | – sequence: 1 givenname: Lyubov O. orcidid: 0000-0002-1053-4925 surname: Lapshenkova fullname: Lapshenkova, Lyubov O. organization: RUDN University – sequence: 2 givenname: Mikhail D. orcidid: 0000-0001-6541-6603 surname: Malykh fullname: Malykh, Mikhail D. organization: RUDN University, Joint Institute for Nuclear Research – sequence: 3 givenname: Elena N. surname: Matyukhina fullname: Matyukhina, Elena N. organization: RUDN University |
| BookMark | eNo9UMtOwzAQtBBIlNJ_yIFrwG8nEhdUAa1UqRc4W469LqnSOLJzoH-Pk1acdueh0e48oNs-9IDQE8HPlDLJXqgUVcmlwiXFVJSMlaykMiNFbtBiVhXh9e11n5z3aJXSEWNMK8UElgu03_fF-AOF6Q7QRNPaYohhgDi2kIrgC9d6DxF6my1Dln7bkxnb0M_ixpzabgx9a_oindMIp_SI7rzpEqyuc4m-P96_1ptyt__crt92pSWKkVI5I410Qiow0nrRcADJvDSVaIQj4GsnmFFY1bwBAxZwdipLso2zBnu2RNtLrgvmqIeYz4pnHUyrZyLEgzb5CduBrjzxTnFfUyJ4o3AjbWWY59RWllWNy1mvlywbQ0oR_H8ewXruWk8N6qlBPXWtGdMTl5Ei7A-g5nY5 |
| Cites_doi | 10.23967/wccm-eccomas.2020.331 10.1137/S0036142900366583 10.1088/1751-8113/47/36/365202 10.1137/0728058 10.3390/math12172725 10.1086/117903 10.1002/9780470753767 10.1017/S0962492904000010 10.1007/978-3-030-85550-5_8 10.3390/math12010167 10.1006/jcph.2001.6771 10.1201/9780429500442 10.1098/rspa.2018.0761 10.1017/S096249290500008X 10.1070/IM1991v040n03ABEH002018 10.1090/mcom/3921 10.1145/363707.363723 10.1017/S0962492902000075 10.1017/CBO9780511614118 10.1023/A:1026619524037 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.22363/2658-4670-2025-33-3-260-271 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2658-7149 |
| EndPage | 271 |
| ExternalDocumentID | oai_doaj_org_article_8f1fd74f92154b70b6c8a3f42c8c38bd 10_22363_2658_4670_2025_33_3_260_271 |
| GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ VCL VIT |
| ID | FETCH-LOGICAL-c1731-7da6a6d567ea6cf5b4ee63f6a85b5d1ef9d53a70794beaece067e7c14ee43b0f3 |
| IEDL.DBID | DOA |
| ISSN | 2658-4670 |
| IngestDate | Mon Nov 03 22:03:12 EST 2025 Wed Nov 05 20:56:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1731-7da6a6d567ea6cf5b4ee63f6a85b5d1ef9d53a70794beaece067e7c14ee43b0f3 |
| ORCID | 0000-0001-6541-6603 0000-0002-1053-4925 |
| OpenAccessLink | https://doaj.org/article/8f1fd74f92154b70b6c8a3f42c8c38bd |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8f1fd74f92154b70b6c8a3f42c8c38bd crossref_primary_10_22363_2658_4670_2025_33_3_260_271 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-15 |
| PublicationDateYYYYMMDD | 2025-10-15 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Discrete and continuous models and applied computational science |
| PublicationYear | 2025 |
| Publisher | Peoples’ Friendship University of Russia (RUDN University) |
| Publisher_xml | – name: Peoples’ Friendship University of Russia (RUDN University) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref6 doi: 10.23967/wccm-eccomas.2020.331 – ident: ref24 doi: 10.1137/S0036142900366583 – ident: ref5 – ident: ref20 – ident: ref21 doi: 10.1088/1751-8113/47/36/365202 – ident: ref2 doi: 10.1137/0728058 – ident: ref11 – ident: ref15 – ident: ref22 doi: 10.3390/math12172725 – ident: ref3 doi: 10.1086/117903 – ident: ref1 doi: 10.1002/9780470753767 – ident: ref25 doi: 10.1017/S0962492904000010 – ident: ref19 doi: 10.1007/978-3-030-85550-5_8 – ident: ref12 doi: 10.3390/math12010167 – ident: ref9 doi: 10.1006/jcph.2001.6771 – ident: ref13 doi: 10.1201/9780429500442 – ident: ref17 doi: 10.1098/rspa.2018.0761 – ident: ref7 doi: 10.1017/S096249290500008X – ident: ref8 doi: 10.1070/IM1991v040n03ABEH002018 – ident: ref16 doi: 10.1090/mcom/3921 – ident: ref18 doi: 10.1145/363707.363723 – ident: ref23 doi: 10.1017/S0962492902000075 – ident: ref4 doi: 10.1017/CBO9780511614118 – ident: ref10 – ident: ref26 doi: 10.1023/A:1026619524037 – ident: ref14 |
| SSID | ssj0002873506 ssib050730783 |
| Score | 2.306602 |
| Snippet | In this paper, we examine difference approximations for dynamic systems characterized by polynomial Hamiltonians, specifically focusing on cases where these... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 260 |
| SubjectTerms | appelroth quadratization birational map hamiltonian system kahan method |
| Title | On the algebraic properties of difference approximations of Hamiltonian systems |
| URI | https://doaj.org/article/8f1fd74f92154b70b6c8a3f42c8c38bd |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2658-7149 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002873506 issn: 2658-4670 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2658-7149 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050730783 issn: 2658-4670 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9xADB4hhBA9VNAWlRZQDnsdkcTzyhEqEAfE9tBK3EbzsrQcdlcLrfj52JNdtJx66THOJIo-O2OPx_NZiEkbBjUEdBIpeJdK505Graw0SP4Jozao60HhO3t_7x4ehp9brb64JmykBx6Bu3DYYbYKB_JNKto2muQCoOqTS-Bi5tm3tcPWYoosSbPhbvanHmsKyYKujTZ7crmSZod2X0y4DroHAxdvQjKaXksACZICfdnb7p2_2qL1r_7n5lB8XAeOzeX4wUdip8w_iQ9bdIKfxXQ6byiea7h1By2CZ6lZcqp9xZypzQKbTTOUREOYSvxlNp5brDdvOdNBgSCZSzPSOz99Eb9vrn_9uJXrhgkydRY6aXMwwWRtbAkmoY6qFANogtORtFBwyBoCc-KpWEJJhVxVsamjYQpii3AsdueLefkqGoU6wZBVpB9UDS5GBNJhRkiQHWp1IvQGFr8ceTE8rScqnJ7h9AynZzg9gGcZXdnuRFwxhm_PMLt1FZDO_Vrn_l86__Y_XvJdHFRlc3WKPhW7z6s_5Uzspb_Ps6fVeTWnV3qMyiA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+algebraic+properties+of+difference+approximations+of+Hamiltonian+systems&rft.jtitle=Discrete+and+continuous+models+and+applied+computational+science&rft.au=Lyubov+O.+Lapshenkova&rft.au=Mikhail+D.+Malykh&rft.au=Elena+N.+Matyukhina&rft.date=2025-10-15&rft.pub=Peoples%E2%80%99+Friendship+University+of+Russia+%28RUDN+University%29&rft.issn=2658-4670&rft.eissn=2658-7149&rft.volume=33&rft.issue=3&rft.spage=260&rft.epage=271&rft_id=info:doi/10.22363%2F2658-4670-2025-33-3-260-271&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8f1fd74f92154b70b6c8a3f42c8c38bd |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2658-4670&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2658-4670&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2658-4670&client=summon |