Distribution-sensitive set multi-partitioning
Given a set $\mathcal{S}$ with real-valued members, associated with each member one of two possible types; a multi-partitioning of $\mathcal{S}$ is a sequence of the members of $\mathcal{S}$ such that if $x,y \in \mathcal{S}$ have different types and $x < y$, $x$ precedes $y$ in the multi-partiti...
Saved in:
| Published in: | Discrete mathematics and theoretical computer science Vol. DMTCS Proceedings vol. AD,...; no. Proceedings; pp. 353 - 356 |
|---|---|
| Main Author: | |
| Format: | Journal Article Conference Proceeding |
| Language: | English |
| Published: |
DMTCS
01.01.2005
Discrete Mathematics and Theoretical Computer Science Discrete Mathematics & Theoretical Computer Science |
| Series: | DMTCS Proceedings |
| Subjects: | |
| ISSN: | 1365-8050, 1462-7264, 1365-8050 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Given a set $\mathcal{S}$ with real-valued members, associated with each member one of two possible types; a multi-partitioning of $\mathcal{S}$ is a sequence of the members of $\mathcal{S}$ such that if $x,y \in \mathcal{S}$ have different types and $x < y$, $x$ precedes $y$ in the multi-partitioning of $\mathcal{S}$. We give two distribution-sensitive algorithms for the set multi-partitioning problem and a matching lower bound in the algebraic decision-tree model. One of the two algorithms can be made stable and can be implemented in place. We also give an output-sensitive algorithm for the problem. |
|---|---|
| ISSN: | 1365-8050 1462-7264 1365-8050 |
| DOI: | 10.46298/dmtcs.3381 |