Distribution-sensitive set multi-partitioning

Given a set $\mathcal{S}$ with real-valued members, associated with each member one of two possible types; a multi-partitioning of $\mathcal{S}$ is a sequence of the members of $\mathcal{S}$ such that if $x,y \in \mathcal{S}$ have different types and $x < y$, $x$ precedes $y$ in the multi-partiti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings vol. AD,...; číslo Proceedings; s. 353 - 356
Hlavní autor: Elmasry, Amr
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: DMTCS 01.01.2005
Discrete Mathematics and Theoretical Computer Science
Discrete Mathematics & Theoretical Computer Science
Edice:DMTCS Proceedings
Témata:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given a set $\mathcal{S}$ with real-valued members, associated with each member one of two possible types; a multi-partitioning of $\mathcal{S}$ is a sequence of the members of $\mathcal{S}$ such that if $x,y \in \mathcal{S}$ have different types and $x < y$, $x$ precedes $y$ in the multi-partitioning of $\mathcal{S}$. We give two distribution-sensitive algorithms for the set multi-partitioning problem and a matching lower bound in the algebraic decision-tree model. One of the two algorithms can be made stable and can be implemented in place. We also give an output-sensitive algorithm for the problem.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.3381