Логический многоугольник для реляционных высказываний: правила построения и применения
Цель настоящей работы — сформулировать правила построения и применения геометрических фигур для выявления и выражения логических отношений (контрарности, субконтрарности, контрадикторности, подчинения) между высказываниями об n-местных отношениях (n — натуральное число, n > 1; пример подобного вы...
Gespeichert in:
| Veröffentlicht in: | Logical Investigations Jg. 30; H. 1; S. 41 - 61 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch Russisch |
| Veröffentlicht: |
07.07.2024
|
| ISSN: | 2074-1472, 2413-2713 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Цель настоящей работы — сформулировать правила построения и применения геометрических фигур для выявления и выражения логических отношений (контрарности, субконтрарности, контрадикторности, подчинения) между высказываниями об n-местных отношениях (n — натуральное число, n > 1; пример подобного высказывания для n = 2: «Каждый юрист знает некоторого логика»). Такие фигуры должны быть построены по аналогии с логическим квадратом, однако для высказываний с n-местным предикатом, а не одноместным, как квадрат. Правила сформулированы и фигуры построены. Эти правила и графическое представление основаны на теоретических положениях, также сформулированных в настоящей работе.
Для достижения цели были выявлены виды подлежащих рассмотрению высказываний и особенности рассматриваемых логических отношений при n > 1, в том числе взаимная выразимость этих отношений, показано, как эти особенности могут быть отраженыграфически и как графическое представление можно использовать для получения информации о логических отношениях произвольно выбранного высказывания с другими.
Предлагаемые правила направлены на выявление, а не только на выражение логических отношений. Будучи алгоритмами, эти правила более эффективны для их выявления, чем исчисление предикатов.
В работе построены соответствующие геометрические фигуры для n = 2, n = 3. Показано, что для других n они могут строиться аналогичным образом, и что логический квадрат также можно рассматривать как частный случай такой фигуры для n = 1.Построенное в настоящей работе графическое представление отношений между высказываниями, в сочетании с правилами его построения и применения, можно называть «логическим многоугольником».
Предлагаемое в работе графическое представление является первым и, на момент написания статьи, единственным успешным решением проблемы построения сходных с логическим квадратом фигур для выражения отношений между высказываниями о многоместных отношениях (для n ⩾ 3), а также проблемы единого представления таких фигур, построенных для разных n.Настоящая работа, вместе с другими статьями её автора, может быть одним из исходных пунктов в новом направлении исследования — аналога силлогистических теорий, но для высказываний об отношениях. |
|---|---|
| ISSN: | 2074-1472 2413-2713 |
| DOI: | 10.21146/2074-1472-2024-30-1-41-61 |