The call-by-value λµ∧∨-calculus
In this paper, we introduce the $λ μ ^{∧∨}$ - call-by-value calculus and we give a proof of the Church-Rosser property of this system. This proof is an adaptation of that of Andou (2003) which uses an extended parallel reduction method and complete development.
Gespeichert in:
| Veröffentlicht in: | Discrete mathematics and theoretical computer science Jg. DMTCS Proceedings vol. AF,...; H. Proceedings; S. 97 - 108 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
DMTCS
01.01.2005
Discrete Mathematics and Theoretical Computer Science Discrete Mathematics & Theoretical Computer Science |
| Schriftenreihe: | DMTCS Proceedings |
| Schlagworte: | |
| ISSN: | 1365-8050, 1462-7264, 1365-8050 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we introduce the $λ μ ^{∧∨}$ - call-by-value calculus and we give a proof of the Church-Rosser property of this system. This proof is an adaptation of that of Andou (2003) which uses an extended parallel reduction method and complete development. |
|---|---|
| ISSN: | 1365-8050 1462-7264 1365-8050 |
| DOI: | 10.46298/dmtcs.3470 |