Dual Immaculate Quasisymmetric Functions Expand Positively into Young Quasisymmetric Schur Functions
We describe a combinatorial formula for the coefficients when the dual immaculate quasisymmetric func- tions are decomposed into Young quasisymmetric Schur functions. We prove this using an analogue of Schensted insertion. We also provide a Remmel-Whitney style rule to generate these coefficients al...
Uloženo v:
| Vydáno v: | Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings, 28th... |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
DMTCS
22.04.2020
Discrete Mathematics & Theoretical Computer Science |
| Témata: | |
| ISSN: | 1365-8050, 1462-7264, 1365-8050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We describe a combinatorial formula for the coefficients when the dual immaculate quasisymmetric func- tions are decomposed into Young quasisymmetric Schur functions. We prove this using an analogue of Schensted insertion. We also provide a Remmel-Whitney style rule to generate these coefficients algorithmically. |
|---|---|
| ISSN: | 1365-8050 1462-7264 1365-8050 |
| DOI: | 10.46298/dmtcs.6410 |