McKay Centralizer Algebras

For a finite subgroup G of the special unitary group SU2, we study the centralizer algebra Zk(G) = EndG(V⊗k) of G acting on the k-fold tensor product of its defining representation V = C2. The McKay corre- spondence relates the representation theory of these groups to an associated affine Dynkin dia...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings, 28th...
Hlavní autori: Benkart, Georgia, Halverson, Tom
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: DMTCS 22.04.2020
Discrete Mathematics & Theoretical Computer Science
Predmet:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:For a finite subgroup G of the special unitary group SU2, we study the centralizer algebra Zk(G) = EndG(V⊗k) of G acting on the k-fold tensor product of its defining representation V = C2. The McKay corre- spondence relates the representation theory of these groups to an associated affine Dynkin diagram, and we use this connection to study the structure and representation theory of Zk(G) via the combinatorics of the Dynkin diagram. When G equals the binary tetrahedral, octahedral, or icosahedral group, we exhibit remarkable connections between Zk (G) and the Martin-Jones set partition algebras.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.6360