Latent factor models for the Chinese commodity futures markets

The rapid growth of Chinese commodity futures markets over the past several decades has created a fertile ground for exploring underlying market dynamics. In this research, we utilize Instrumented Principal Component Analysis (IPCA) alongside the Conditional Autoencoder (CA) method to construct late...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pacific-Basin finance journal Jg. 93; S. 102890
Hauptverfasser: Liu, Yanchu, Zhou, Heyang, Yang, Haisheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2025
Schlagworte:
ISSN:0927-538X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The rapid growth of Chinese commodity futures markets over the past several decades has created a fertile ground for exploring underlying market dynamics. In this research, we utilize Instrumented Principal Component Analysis (IPCA) alongside the Conditional Autoencoder (CA) method to construct latent factor models tailored to this market. By uncovering hidden patterns and intrinsic characteristics that drive futures prices, our empirical results demonstrate robust out-of-sample predictive accuracy. •We develop IPCA and CA models for Chinese Commodity Futures Markets.•We expand the set of profitable factors available for Chinese Commodity Futures Markets.•Comprehensive explanations with insights for the uncovered factors are provided.
AbstractList The rapid growth of Chinese commodity futures markets over the past several decades has created a fertile ground for exploring underlying market dynamics. In this research, we utilize Instrumented Principal Component Analysis (IPCA) alongside the Conditional Autoencoder (CA) method to construct latent factor models tailored to this market. By uncovering hidden patterns and intrinsic characteristics that drive futures prices, our empirical results demonstrate robust out-of-sample predictive accuracy. •We develop IPCA and CA models for Chinese Commodity Futures Markets.•We expand the set of profitable factors available for Chinese Commodity Futures Markets.•Comprehensive explanations with insights for the uncovered factors are provided.
ArticleNumber 102890
Author Yang, Haisheng
Zhou, Heyang
Liu, Yanchu
Author_xml – sequence: 1
  givenname: Yanchu
  surname: Liu
  fullname: Liu, Yanchu
– sequence: 2
  givenname: Heyang
  surname: Zhou
  fullname: Zhou, Heyang
– sequence: 3
  givenname: Haisheng
  surname: Yang
  fullname: Yang, Haisheng
  email: yhaish@mail.sysu.edu.cn
BookMark eNp9j81qAjEUhbOwULV9gy7yAmNvMmYm2QhF-gdCNy10F5LMDcbqjCSx4Ns3Ml27OpdzOIf7zcikH3ok5IHBggFrHneLo3E-9AsOXBSLSwUTMgXF20rU8vuWzFLaAZSUqSlZbUzGPlNvXB4iPQwd7hP15cxbpOtt6DEhdcOhJCGfqT_lU8REDyb-YE535MabfcL7f52Tr5fnz_Vbtfl4fV8_bSrHWp4rI5cd1mBa23LZepQItfUCebM00jecK2OVsFbVKBrgtVCA0iurWhCdlayek-W46-KQUkSvjzGUH86agb5w650eufWFW4_cpbYaawUKfwNGnVzA3mEXIrqsuyFcH_gDV59m_A
Cites_doi 10.1111/jofi.13233
10.1086/295472
10.1111/j.1540-6261.1997.tb03808.x
10.1146/annurev-financial-101521-104735
10.1093/rfs/hhu068
10.1016/j.jfineco.2014.10.010
10.1093/rfs/hhaa009
10.1016/j.jfineco.2019.05.001
10.1016/0304-405X(86)90027-9
10.1111/jofi.12612
10.1287/mnsc.2021.4020
10.1093/rfs/hhw102
10.1561/0500000064
10.1111/acfi.13321
10.1016/0893-6080(89)90014-2
10.1016/0304-405X(93)90023-5
10.1016/j.energy.2019.04.077
10.2307/1912275
10.1093/rfs/hhy093
10.1016/j.jfineco.2021.12.007
10.1016/j.jfineco.2020.06.024
10.1016/j.jempfin.2023.101433
10.1016/j.ribaf.2024.102662
10.2307/1913625
10.1002/for.3149
10.1016/j.eswa.2016.09.027
10.1002/fut.22471
10.2307/1924119
10.1093/rfs/hhv063
10.1093/rfs/hhaa019
10.1016/j.jfineco.2024.103791
10.1093/rfs/hhz123
10.1016/j.irfa.2023.102555
10.1086/260061
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.pacfin.2025.102890
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Business
ExternalDocumentID 10_1016_j_pacfin_2025_102890
S0927538X25002276
GroupedDBID --K
--M
.~1
0R~
123
1B1
1OL
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
96U
9JO
AAEDT
AAEDW
AAFFL
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACBMB
ACDAQ
ACGFO
ACGFS
ACHQT
ACLOT
ACRLP
ACROA
ACRPL
ADBBV
ADEZE
ADFHU
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AEYQN
AFAZI
AFJKZ
AFODL
AFTJW
AGHFR
AGQPQ
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIAU
AIIUN
AIKHN
AITUG
AJWLA
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BEZPJ
BGSCR
BKOJK
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F8P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMB
HVGLF
HZ~
IHE
J1W
KOM
LXL
LXN
LY5
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SEB
SEE
SES
SEW
SPCBC
SSB
SSF
SSZ
T5K
TN5
U5U
UHS
WUQ
XSW
XYO
YK3
ZRQ
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c172t-a84de30a7b7287fe8e03bf5e264a8f6229ab95bb93e56023590e8f9b9705db813
ISSN 0927-538X
IngestDate Sat Nov 29 06:47:42 EST 2025
Sat Oct 11 16:52:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Conditional autoencoder
Factor model
Instrumented principal component analysis
Machine learning
Commodity futures
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c172t-a84de30a7b7287fe8e03bf5e264a8f6229ab95bb93e56023590e8f9b9705db813
ParticipantIDs crossref_primary_10_1016_j_pacfin_2025_102890
elsevier_sciencedirect_doi_10_1016_j_pacfin_2025_102890
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Pacific-Basin finance journal
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kelly, Xiu (bb0130) 2023; 13
Lintner (bb0170) 1965; 47
Fama, French (bb0060) 1993; 33
Gu, Kelly, Xiu (bb0105) 2020; 33
Ren, Xiao, Zhang, Sun (bb0215) 2025; 65
Sharpe (bb0225) 1964; 19
Büchner, Kelly (bb0025) 2022; 143
Baldi, Hornik (bb0010) 1989; 2
Ren, Jiang, Ji, Zhai (bb0205) 2024; 43
Tao, Jiang, Ren (bb0230) 2024; 96
Giglio, Kelly, Xiu (bb0095) 2022; 14
Kelly, Pruitt, Su (bb0140) 2019; 134
Freyberger, Neuhierl, Weber (bb0090) 2020; 33
Chamberlain, Rothschild (bb0040) 1983; 51
Kelly, Palhares, Pruitt (bb0155) 2023; 78
Ma, Leong, Jiang (bb0175) 2023; 87
Rad, Low, Miffre, Faff (bib241) 2023; 74
Black (bb0015) 1972; 45
Connor, Korajczyk (bb0045) 1986; 15
Kozak, Nagel, Santosh (bb0160) 2018; 73
Gu, Kelly, Xiu (bb0100) 2019; 222
Pukthuanthong, Roll, Subrahmanyam (bb0200) 2019; 32
Novy-Marx, Velikov (bb0195) 2015; 29
Hou, Xue, Zhang (bb0110) 2015; 28
Karolyi, Van Nieuwerburgh (bib245) 2020; 33
Light, Maslov, Rytchkov (bb0165) 2017; 30
Murray, Xia, Xiao (bb0180) 2024; 153
Wang, Zhang (bb0235) 2024; 44
Carhart (bb0035) 1997; 52
Fama, MacBeth (bb0070) 1973; 81
Han, Kong (bib243) 2022
Ren, Fu, Jin (bb0210) 2025; 74
Zhong, Enke (bb0240) 2017; 67
Herrera, Constantino, Tabak, Pistori, Su, Naranpanawa (bib242) 2019; 179
Huang, Jiang, Li, Tong, Zhou (bb0115) 2021; 68
Kelly, Moskowitz, Pruitt (bb0150) 2021; 140
Fama, French (bb0065) 2015; 116
Gibbons, Ross, Shanken (bib244) 1989; 57
Kelly, Pruitt, Su (bb0135) 2017
Hou (10.1016/j.pacfin.2025.102890_bb0110) 2015; 28
Carhart (10.1016/j.pacfin.2025.102890_bb0035) 1997; 52
Gu (10.1016/j.pacfin.2025.102890_bb0105) 2020; 33
Fama (10.1016/j.pacfin.2025.102890_bb0065) 2015; 116
Huang (10.1016/j.pacfin.2025.102890_bb0115) 2021; 68
Kelly (10.1016/j.pacfin.2025.102890_bb0130) 2023; 13
Connor (10.1016/j.pacfin.2025.102890_bb0045) 1986; 15
Fama (10.1016/j.pacfin.2025.102890_bb0070) 1973; 81
Fama (10.1016/j.pacfin.2025.102890_bb0060) 1993; 33
Giglio (10.1016/j.pacfin.2025.102890_bb0095) 2022; 14
Kelly (10.1016/j.pacfin.2025.102890_bb0155) 2023; 78
Kelly (10.1016/j.pacfin.2025.102890_bb0150) 2021; 140
Herrera (10.1016/j.pacfin.2025.102890_bib242) 2019; 179
Ren (10.1016/j.pacfin.2025.102890_bb0205) 2024; 43
Büchner (10.1016/j.pacfin.2025.102890_bb0025) 2022; 143
Murray (10.1016/j.pacfin.2025.102890_bb0180) 2024; 153
Karolyi (10.1016/j.pacfin.2025.102890_bib245) 2020; 33
Gibbons (10.1016/j.pacfin.2025.102890_bib244) 1989; 57
Baldi (10.1016/j.pacfin.2025.102890_bb0010) 1989; 2
Freyberger (10.1016/j.pacfin.2025.102890_bb0090) 2020; 33
Lintner (10.1016/j.pacfin.2025.102890_bb0170) 1965; 47
Pukthuanthong (10.1016/j.pacfin.2025.102890_bb0200) 2019; 32
Chamberlain (10.1016/j.pacfin.2025.102890_bb0040) 1983; 51
Kelly (10.1016/j.pacfin.2025.102890_bb0135) 2017
Ren (10.1016/j.pacfin.2025.102890_bb0210) 2025; 74
Ma (10.1016/j.pacfin.2025.102890_bb0175) 2023; 87
Tao (10.1016/j.pacfin.2025.102890_bb0230) 2024; 96
Kelly (10.1016/j.pacfin.2025.102890_bb0140) 2019; 134
Gu (10.1016/j.pacfin.2025.102890_bb0100) 2019; 222
Kozak (10.1016/j.pacfin.2025.102890_bb0160) 2018; 73
Sharpe (10.1016/j.pacfin.2025.102890_bb0225) 1964; 19
Han (10.1016/j.pacfin.2025.102890_bib243) 2022
Ren (10.1016/j.pacfin.2025.102890_bb0215) 2025; 65
Light (10.1016/j.pacfin.2025.102890_bb0165) 2017; 30
Wang (10.1016/j.pacfin.2025.102890_bb0235) 2024; 44
Zhong (10.1016/j.pacfin.2025.102890_bb0240) 2017; 67
Black (10.1016/j.pacfin.2025.102890_bb0015) 1972; 45
Novy-Marx (10.1016/j.pacfin.2025.102890_bb0195) 2015; 29
Rad (10.1016/j.pacfin.2025.102890_bib241) 2023; 74
References_xml – volume: 67
  start-page: 126
  year: 2017
  end-page: 139
  ident: bb0240
  article-title: Forecasting daily stock market return using dimensionality reduction
  publication-title: Expert Syst. Appl.
– year: 2017
  ident: bb0135
  article-title: Instrumented principal component analysis
– volume: 96
  start-page: 1
  year: 2024
  end-page: 10
  ident: bb0230
  article-title: Analyzing the green bond index: a novel quantile-based high-dimensional approach
  publication-title: Int. Rev. Financ. Anal.
– volume: 51
  start-page: 1281
  year: 1983
  end-page: 1304
  ident: bb0040
  article-title: Arbitrage, factor structure, and mean-variance analysis on large asset markets
  publication-title: Econometrica
– volume: 2
  start-page: 53
  year: 1989
  end-page: 58
  ident: bb0010
  article-title: Neural networks and principal component analysis: learning from examples without local minima
  publication-title: Neural Netw.
– volume: 68
  start-page: 1678
  year: 2021
  end-page: 1695
  ident: bb0115
  article-title: Scaled PCA: a new approach to dimension reduction
  publication-title: Manag. Sci.
– volume: 45
  start-page: 444
  year: 1972
  end-page: 455
  ident: bb0015
  article-title: Capital market equilibrium with restricted borrowing
  publication-title: J. Bus.
– volume: 57
  start-page: 1121
  year: 1989
  end-page: 1152
  ident: bib244
  article-title: A Test of the Efficiency of a Given Portfolio
  publication-title: Econometrica
– volume: 28
  start-page: 650
  year: 2015
  end-page: 705
  ident: bb0110
  article-title: Digesting anomalies: an investment approach
  publication-title: Rev. Financ. Stud.
– volume: 29
  start-page: 104
  year: 2015
  end-page: 147
  ident: bb0195
  article-title: A taxonomy of anomalies and their trading costs
  publication-title: Rev. Financ. Stud.
– volume: 47
  start-page: 13
  year: 1965
  end-page: 37
  ident: bb0170
  article-title: The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets
  publication-title: Rev. Econ. Stat.
– volume: 44
  start-page: 302
  year: 2024
  end-page: 322
  ident: bb0235
  article-title: Predictability of commodity futures returns with machine learning models
  publication-title: J. Futur. Mark.
– volume: 32
  start-page: 1573
  year: 2019
  end-page: 1607
  ident: bb0200
  article-title: A protocol for factor identification
  publication-title: Rev. Financ. Stud.
– volume: 33
  start-page: 2223
  year: 2020
  end-page: 2273
  ident: bb0105
  article-title: Empirical asset pricing via machine learning
  publication-title: Rev. Financ. Stud.
– volume: 14
  start-page: 337
  year: 2022
  end-page: 368
  ident: bb0095
  article-title: Factor models, machine learning, and asset pricing
  publication-title: Annu. Rev. Financ. Econ.
– volume: 81
  start-page: 607
  year: 1973
  end-page: 636
  ident: bb0070
  article-title: Risk, return, and equilibrium: empirical tests
  publication-title: J. Polit. Econ.
– volume: 30
  start-page: 1339
  year: 2017
  end-page: 1381
  ident: bb0165
  article-title: Aggregation of information about the cross section of stock returns: a latent variable approach
  publication-title: Rev. Financ. Stud.
– volume: 73
  start-page: 1183
  year: 2018
  end-page: 1223
  ident: bb0160
  article-title: Interpreting factor models
  publication-title: J. Financ.
– volume: 52
  start-page: 57
  year: 1997
  end-page: 82
  ident: bb0035
  article-title: On persistence in mutual fund performance
  publication-title: J. Financ.
– volume: 13
  start-page: 205
  year: 2023
  end-page: 363
  ident: bb0130
  article-title: Financial machine learning
  publication-title: Found. Trends Financ.
– volume: 74
  start-page: 1
  year: 2025
  end-page: 17
  ident: bb0210
  article-title: Climate risk perception and oil financialization in China: evidence from a time-varying granger model
  publication-title: Res. Int. Bus. Financ.
– volume: 87
  start-page: 1
  year: 2023
  end-page: 21
  ident: bb0175
  article-title: A latent factor model for the Chinese stock market
  publication-title: Int. Rev. Financ. Anal.
– volume: 134
  start-page: 501
  year: 2019
  end-page: 524
  ident: bb0140
  article-title: Characteristics are covariances: a unified model of risk and return
  publication-title: J. Financ. Econ.
– volume: 179
  start-page: 214
  year: 2019
  end-page: 221
  ident: bib242
  article-title: Long-Term Forecast of Energy Commodities Price Using Machine Learning
  publication-title: Energy
– volume: 33
  start-page: 3
  year: 1993
  end-page: 56
  ident: bb0060
  article-title: Common risk factors in the returns on stocks and bonds
  publication-title: J. Financ. Econ.
– volume: 78
  start-page: 1967
  year: 2023
  end-page: 2008
  ident: bb0155
  article-title: Modeling corporate bond returns
  publication-title: J. Financ.
– volume: 153
  start-page: 1
  year: 2024
  end-page: 28
  ident: bb0180
  article-title: Charting by machines
  publication-title: J. Financ. Econ.
– volume: 74
  start-page: 1
  year: 2023
  end-page: 43
  ident: bib241
  article-title: The Commodity Risk Premium and Neural Networks
  publication-title: J. Empir. Financ.
– volume: 65
  start-page: 109
  year: 2025
  end-page: 141
  ident: bb0215
  article-title: Tail risk spillover of commodity futures markets
  publication-title: Account. Finance
– volume: 43
  start-page: 2809
  year: 2024
  end-page: 2821
  ident: bb0205
  article-title: Seeing is believing: forecasting crude oil price trend from the perspective of images
  publication-title: J. Forecast.
– volume: 33
  start-page: 1879
  year: 2020
  end-page: 1890
  ident: bib245
  article-title: New methods for the cross-section of returns
  publication-title: Rev. Financ. Stud.
– year: 2022
  ident: bib243
  article-title: The lead-lag relations in the commodity futures returns: a machine learning approach
  publication-title: Working paper, University of North Carolina at Charlotte
– volume: 140
  start-page: 726
  year: 2021
  end-page: 743
  ident: bb0150
  article-title: Understanding momentum and reversal
  publication-title: J. Financ. Econ.
– volume: 222
  start-page: 429
  year: 2019
  end-page: 450
  ident: bb0100
  article-title: Autoencoder asset pricing models
  publication-title: J. Econ.
– volume: 33
  start-page: 2326
  year: 2020
  end-page: 2377
  ident: bb0090
  article-title: Dissecting characteristics nonparametrically
  publication-title: Rev. Financ. Stud.
– volume: 19
  start-page: 425
  year: 1964
  end-page: 442
  ident: bb0225
  article-title: Capital asset prices: a theory of market equilibrium under conditions of risk
  publication-title: J. Financ.
– volume: 116
  start-page: 1
  year: 2015
  end-page: 22
  ident: bb0065
  article-title: A five-factor asset pricing model
  publication-title: J. Financ. Econ.
– volume: 143
  start-page: 1140
  year: 2022
  end-page: 1161
  ident: bb0025
  article-title: A factor model for option returns
  publication-title: J. Financ. Econ.
– volume: 15
  start-page: 373
  year: 1986
  end-page: 394
  ident: bb0045
  article-title: Performance measurement with the arbitrage pricing theory: a new framework for analysis
  publication-title: J. Financ. Econ.
– volume: 78
  start-page: 1967
  issue: 4
  year: 2023
  ident: 10.1016/j.pacfin.2025.102890_bb0155
  article-title: Modeling corporate bond returns
  publication-title: J. Financ.
  doi: 10.1111/jofi.13233
– volume: 45
  start-page: 444
  issue: 3
  year: 1972
  ident: 10.1016/j.pacfin.2025.102890_bb0015
  article-title: Capital market equilibrium with restricted borrowing
  publication-title: J. Bus.
  doi: 10.1086/295472
– volume: 52
  start-page: 57
  issue: 1
  year: 1997
  ident: 10.1016/j.pacfin.2025.102890_bb0035
  article-title: On persistence in mutual fund performance
  publication-title: J. Financ.
  doi: 10.1111/j.1540-6261.1997.tb03808.x
– volume: 14
  start-page: 337
  issue: 1
  year: 2022
  ident: 10.1016/j.pacfin.2025.102890_bb0095
  article-title: Factor models, machine learning, and asset pricing
  publication-title: Annu. Rev. Financ. Econ.
  doi: 10.1146/annurev-financial-101521-104735
– volume: 28
  start-page: 650
  issue: 3
  year: 2015
  ident: 10.1016/j.pacfin.2025.102890_bb0110
  article-title: Digesting anomalies: an investment approach
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/hhu068
– volume: 116
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.pacfin.2025.102890_bb0065
  article-title: A five-factor asset pricing model
  publication-title: J. Financ. Econ.
  doi: 10.1016/j.jfineco.2014.10.010
– volume: 33
  start-page: 2223
  issue: 5
  year: 2020
  ident: 10.1016/j.pacfin.2025.102890_bb0105
  article-title: Empirical asset pricing via machine learning
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/hhaa009
– volume: 134
  start-page: 501
  issue: 3
  year: 2019
  ident: 10.1016/j.pacfin.2025.102890_bb0140
  article-title: Characteristics are covariances: a unified model of risk and return
  publication-title: J. Financ. Econ.
  doi: 10.1016/j.jfineco.2019.05.001
– year: 2022
  ident: 10.1016/j.pacfin.2025.102890_bib243
  article-title: The lead-lag relations in the commodity futures returns: a machine learning approach
– volume: 15
  start-page: 373
  issue: 3
  year: 1986
  ident: 10.1016/j.pacfin.2025.102890_bb0045
  article-title: Performance measurement with the arbitrage pricing theory: a new framework for analysis
  publication-title: J. Financ. Econ.
  doi: 10.1016/0304-405X(86)90027-9
– volume: 73
  start-page: 1183
  issue: 3
  year: 2018
  ident: 10.1016/j.pacfin.2025.102890_bb0160
  article-title: Interpreting factor models
  publication-title: J. Financ.
  doi: 10.1111/jofi.12612
– volume: 19
  start-page: 425
  issue: 3
  year: 1964
  ident: 10.1016/j.pacfin.2025.102890_bb0225
  article-title: Capital asset prices: a theory of market equilibrium under conditions of risk
  publication-title: J. Financ.
– volume: 68
  start-page: 1678
  issue: 3
  year: 2021
  ident: 10.1016/j.pacfin.2025.102890_bb0115
  article-title: Scaled PCA: a new approach to dimension reduction
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.2021.4020
– volume: 30
  start-page: 1339
  issue: 4
  year: 2017
  ident: 10.1016/j.pacfin.2025.102890_bb0165
  article-title: Aggregation of information about the cross section of stock returns: a latent variable approach
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/hhw102
– volume: 13
  start-page: 205
  year: 2023
  ident: 10.1016/j.pacfin.2025.102890_bb0130
  article-title: Financial machine learning
  publication-title: Found. Trends Financ.
  doi: 10.1561/0500000064
– volume: 65
  start-page: 109
  year: 2025
  ident: 10.1016/j.pacfin.2025.102890_bb0215
  article-title: Tail risk spillover of commodity futures markets
  publication-title: Account. Finance
  doi: 10.1111/acfi.13321
– volume: 2
  start-page: 53
  issue: 1
  year: 1989
  ident: 10.1016/j.pacfin.2025.102890_bb0010
  article-title: Neural networks and principal component analysis: learning from examples without local minima
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90014-2
– volume: 33
  start-page: 3
  issue: 1
  year: 1993
  ident: 10.1016/j.pacfin.2025.102890_bb0060
  article-title: Common risk factors in the returns on stocks and bonds
  publication-title: J. Financ. Econ.
  doi: 10.1016/0304-405X(93)90023-5
– volume: 179
  start-page: 214
  year: 2019
  ident: 10.1016/j.pacfin.2025.102890_bib242
  article-title: Long-Term Forecast of Energy Commodities Price Using Machine Learning
  publication-title: Energy
  doi: 10.1016/j.energy.2019.04.077
– volume: 51
  start-page: 1281
  issue: 5
  year: 1983
  ident: 10.1016/j.pacfin.2025.102890_bb0040
  article-title: Arbitrage, factor structure, and mean-variance analysis on large asset markets
  publication-title: Econometrica
  doi: 10.2307/1912275
– volume: 32
  start-page: 1573
  issue: 4
  year: 2019
  ident: 10.1016/j.pacfin.2025.102890_bb0200
  article-title: A protocol for factor identification
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/hhy093
– volume: 143
  start-page: 1140
  issue: 3
  year: 2022
  ident: 10.1016/j.pacfin.2025.102890_bb0025
  article-title: A factor model for option returns
  publication-title: J. Financ. Econ.
  doi: 10.1016/j.jfineco.2021.12.007
– volume: 140
  start-page: 726
  issue: 3
  year: 2021
  ident: 10.1016/j.pacfin.2025.102890_bb0150
  article-title: Understanding momentum and reversal
  publication-title: J. Financ. Econ.
  doi: 10.1016/j.jfineco.2020.06.024
– volume: 74
  start-page: 1
  year: 2023
  ident: 10.1016/j.pacfin.2025.102890_bib241
  article-title: The Commodity Risk Premium and Neural Networks
  publication-title: J. Empir. Financ.
  doi: 10.1016/j.jempfin.2023.101433
– volume: 96
  start-page: 1
  issue: B
  year: 2024
  ident: 10.1016/j.pacfin.2025.102890_bb0230
  article-title: Analyzing the green bond index: a novel quantile-based high-dimensional approach
  publication-title: Int. Rev. Financ. Anal.
– volume: 74
  start-page: 1
  year: 2025
  ident: 10.1016/j.pacfin.2025.102890_bb0210
  article-title: Climate risk perception and oil financialization in China: evidence from a time-varying granger model
  publication-title: Res. Int. Bus. Financ.
  doi: 10.1016/j.ribaf.2024.102662
– volume: 57
  start-page: 1121
  year: 1989
  ident: 10.1016/j.pacfin.2025.102890_bib244
  article-title: A Test of the Efficiency of a Given Portfolio
  publication-title: Econometrica
  doi: 10.2307/1913625
– year: 2017
  ident: 10.1016/j.pacfin.2025.102890_bb0135
– volume: 43
  start-page: 2809
  issue: 7
  year: 2024
  ident: 10.1016/j.pacfin.2025.102890_bb0205
  article-title: Seeing is believing: forecasting crude oil price trend from the perspective of images
  publication-title: J. Forecast.
  doi: 10.1002/for.3149
– volume: 67
  start-page: 126
  year: 2017
  ident: 10.1016/j.pacfin.2025.102890_bb0240
  article-title: Forecasting daily stock market return using dimensionality reduction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.027
– volume: 222
  start-page: 429
  issue: 1
  year: 2019
  ident: 10.1016/j.pacfin.2025.102890_bb0100
  article-title: Autoencoder asset pricing models
  publication-title: J. Econ.
– volume: 44
  start-page: 302
  year: 2024
  ident: 10.1016/j.pacfin.2025.102890_bb0235
  article-title: Predictability of commodity futures returns with machine learning models
  publication-title: J. Futur. Mark.
  doi: 10.1002/fut.22471
– volume: 47
  start-page: 13
  issue: 1
  year: 1965
  ident: 10.1016/j.pacfin.2025.102890_bb0170
  article-title: The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets
  publication-title: Rev. Econ. Stat.
  doi: 10.2307/1924119
– volume: 29
  start-page: 104
  issue: 1
  year: 2015
  ident: 10.1016/j.pacfin.2025.102890_bb0195
  article-title: A taxonomy of anomalies and their trading costs
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/hhv063
– volume: 33
  start-page: 1879
  year: 2020
  ident: 10.1016/j.pacfin.2025.102890_bib245
  article-title: New methods for the cross-section of returns
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/hhaa019
– volume: 153
  start-page: 1
  year: 2024
  ident: 10.1016/j.pacfin.2025.102890_bb0180
  article-title: Charting by machines
  publication-title: J. Financ. Econ.
  doi: 10.1016/j.jfineco.2024.103791
– volume: 33
  start-page: 2326
  issue: 5
  year: 2020
  ident: 10.1016/j.pacfin.2025.102890_bb0090
  article-title: Dissecting characteristics nonparametrically
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/hhz123
– volume: 87
  start-page: 1
  year: 2023
  ident: 10.1016/j.pacfin.2025.102890_bb0175
  article-title: A latent factor model for the Chinese stock market
  publication-title: Int. Rev. Financ. Anal.
  doi: 10.1016/j.irfa.2023.102555
– volume: 81
  start-page: 607
  issue: 3
  year: 1973
  ident: 10.1016/j.pacfin.2025.102890_bb0070
  article-title: Risk, return, and equilibrium: empirical tests
  publication-title: J. Polit. Econ.
  doi: 10.1086/260061
SSID ssj0002519
Score 2.3909311
Snippet The rapid growth of Chinese commodity futures markets over the past several decades has created a fertile ground for exploring underlying market dynamics. In...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 102890
SubjectTerms Commodity futures
Conditional autoencoder
Factor model
Instrumented principal component analysis
Machine learning
Title Latent factor models for the Chinese commodity futures markets
URI https://dx.doi.org/10.1016/j.pacfin.2025.102890
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0927-538X
  databaseCode: AIEXJ
  dateStart: 19950501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002519
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA46RXwRr3gnD76NSG-xyYswRVEREVTYW0naBCfYDbuJ_ntPLu2GE1HBlzJSmobzZSdfD-ecD6ED-MskEnYOCQoTrcqVJELlIRGcJVpomuRMWrGJ9OaGdbv81gsnVlZOIC1L9vbGB_8KNYwB2KZ09hdwN5PCAPwG0OEKsMP1R8BfA3s0DZeskI5TuqmaZEIjl61shjosqDAM3DUVqdrPtvy5miSrPmGPnIiqV7a17c2h2pOLMJk8vZF143DvcTQOQ_dH7lB7F_5oNJ7Fx6YvjOSz8uM-4hDRJnfNh8GmSmFcPDFKCXjP7qRrdeKHU17aBQyeDgcih7UfmneYFhLMCYd-6n99Z2Y2EwNZM_0Oj2bRHAxw1kJzncuz7lVz8JoiXNta0a-krpS06XzT7_qaiUywi_tltOQ_C3DHwbmCZlS5ihbqqoQ1dOxQxQ5V7FDFgCoGVLFHFTeoYo8q9qiuo4fzs_vTC-KlL0gOjHJIBEsKFQcilSl80mrFVBBLTRXQV8H0URRxITmVkscKKGsUUx4oprnkaUALycJ4A7XKfqk2Te5aLENWUB2GKomiUFImdCioBmJMIy22EKnNkA1ch5OsTv17ypzZMmO2zJltC6W1rTLP0hz7ygDeb5_c_vOTO2hxvBF3UWv4MlJ7aD5_Hfaql32_Dz4AF_JkFw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+factor+models+for+the+Chinese+commodity+futures+markets&rft.jtitle=Pacific-Basin+finance+journal&rft.au=Liu%2C+Yanchu&rft.au=Zhou%2C+Heyang&rft.au=Yang%2C+Haisheng&rft.date=2025-10-01&rft.pub=Elsevier+B.V&rft.issn=0927-538X&rft.volume=93&rft_id=info:doi/10.1016%2Fj.pacfin.2025.102890&rft.externalDocID=S0927538X25002276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-538X&client=summon