Optimal design and energy intensity comparison of industrialized routes for electronic-grade dimethyl carbonate synthesis: Toward sustainable strategies

Dimethyl carbonate (DMC), as electrolyte solvent with strong ionic conductivity and excellent stability, is widely used in lithium batteries. In addition, DMC could be used as raw material for polycarbonate synthesis. There are a series of industrial production routes for DMC, such as the transester...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Separation and purification technology Ročník 382; s. 135983
Hlavní autoři: Gao, Ge, Liu, Botan, Ge, Xiaolong, Yuan, Xigang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 26.02.2026
Témata:
ISSN:1383-5866
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Dimethyl carbonate (DMC), as electrolyte solvent with strong ionic conductivity and excellent stability, is widely used in lithium batteries. In addition, DMC could be used as raw material for polycarbonate synthesis. There are a series of industrial production routes for DMC, such as the transesterification of ethylene carbonate (EC) with methanol (MeOH), the vapor-phase MeOH oxidative carbonylation method, and the indirect urea alcoholysis method, among others. However, systematic comparative investigations on these industrialized routes are still lacking, making it impossible to comprehensively assess the advantages and industrialization prospects of different DMC production processes. The optimization of DMC production processes falls under the category of rigorous Mixed-Integer Nonlinear Programming (MINLP) problems. In the transesterification route, the significant energy consumption stems from the separation of the DMC-MeOH azeotrope. To address this, strategies like heat pumps, extractive distillation, and pervaporation have been employed for process intensification, aiming to break the DMC-MeOH azeotrope. To ensure that the various DMC production routes are compared under optimal conditions, this present work integrates Genetic Algorithm (GA) with rigorous simulation to optimize the process parameters of each industrialized route. Concurrently, detailed comparisons are conducted in terms of economic indicators, environmental metrics, and exergy efficiency. The optimization results validate the robustness and effectiveness of the proposed optimization strategy, and the route for the direct synthesis of DMC from carbon dioxide (CO2) and MeOH demonstrates competitive advantages. [Display omitted] •Process intensification for azeotrope separation using heat pump, extractive distillation and pervaporation realized.•Stochastic optimization algorithm coupled with process simulation for parameters optimization.•Series industrialized routes for Dimethyl Carbonate synthesis compared in terms of economic, environmental and exergy indexes.•Energy-efficient route for Dimethyl Carbonate synthesis obtained toward sustainable synthesis strategy.
AbstractList Dimethyl carbonate (DMC), as electrolyte solvent with strong ionic conductivity and excellent stability, is widely used in lithium batteries. In addition, DMC could be used as raw material for polycarbonate synthesis. There are a series of industrial production routes for DMC, such as the transesterification of ethylene carbonate (EC) with methanol (MeOH), the vapor-phase MeOH oxidative carbonylation method, and the indirect urea alcoholysis method, among others. However, systematic comparative investigations on these industrialized routes are still lacking, making it impossible to comprehensively assess the advantages and industrialization prospects of different DMC production processes. The optimization of DMC production processes falls under the category of rigorous Mixed-Integer Nonlinear Programming (MINLP) problems. In the transesterification route, the significant energy consumption stems from the separation of the DMC-MeOH azeotrope. To address this, strategies like heat pumps, extractive distillation, and pervaporation have been employed for process intensification, aiming to break the DMC-MeOH azeotrope. To ensure that the various DMC production routes are compared under optimal conditions, this present work integrates Genetic Algorithm (GA) with rigorous simulation to optimize the process parameters of each industrialized route. Concurrently, detailed comparisons are conducted in terms of economic indicators, environmental metrics, and exergy efficiency. The optimization results validate the robustness and effectiveness of the proposed optimization strategy, and the route for the direct synthesis of DMC from carbon dioxide (CO2) and MeOH demonstrates competitive advantages. [Display omitted] •Process intensification for azeotrope separation using heat pump, extractive distillation and pervaporation realized.•Stochastic optimization algorithm coupled with process simulation for parameters optimization.•Series industrialized routes for Dimethyl Carbonate synthesis compared in terms of economic, environmental and exergy indexes.•Energy-efficient route for Dimethyl Carbonate synthesis obtained toward sustainable synthesis strategy.
ArticleNumber 135983
Author Yuan, Xigang
Ge, Xiaolong
Liu, Botan
Gao, Ge
Author_xml – sequence: 1
  givenname: Ge
  surname: Gao
  fullname: Gao, Ge
  organization: College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology, Tianjin 300457, China
– sequence: 2
  givenname: Botan
  surname: Liu
  fullname: Liu, Botan
  organization: College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology, Tianjin 300457, China
– sequence: 3
  givenname: Xiaolong
  surname: Ge
  fullname: Ge, Xiaolong
  email: gexiaolong@tust.edu.cn
  organization: College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology, Tianjin 300457, China
– sequence: 4
  givenname: Xigang
  surname: Yuan
  fullname: Yuan, Xigang
  organization: State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, China
BookMark eNp9kE1qwzAQhbVIoUnaG3ShCzi17Fi2uiiU0D8IZJOuhSxNEgVHMiOlxT1Jj1sFd93VwMx7bx7fjEycd0DIHcsXLGf8_rgI0PdnXBR5US1YWYmmnJApK5syqxrOr8kshGOes5o1xZT8bPpoT6qjBoLdO6qcoeAA9wO1LoILNg5U-1Ov0AbvqN-lvTmHiFZ19hsMRX-OEOjOI4UOdETvrM72qAxQY08QD0NHtcLWOxWBhsHFQ_oVHujWfyk0NKQ0ZZ1qu3SNmER7C-GGXO1UF-D2b87Jx8vzdvWWrTev76undaZZXcRM6LIWTAsjTC6gNqJlivOiVQIY51yXwEG3Rcn1krOCt0JVpq7rVE7pfNmqck6WY65GHwLCTvaYgOAgWS4vROVRjkTlhagciSbb42iD1O3TAsqgLTgNxmKCII23_wf8ApyQi60
Cites_doi 10.1021/acssuschemeng.0c00263
10.1016/j.seppur.2022.120598
10.1021/acssuschemeng.8b06375
10.3390/pr10102094
10.1021/acs.iecr.7b02341
10.1016/j.compchemeng.2021.107552
10.1016/j.cjche.2017.03.039
10.1016/j.seppur.2022.122791
10.1021/ie801428s
10.1016/j.rser.2024.114687
10.1016/S0959-6526(98)00074-2
10.1016/j.cattod.2018.02.021
10.1016/j.memsci.2024.123520
10.1016/j.cherd.2014.05.002
10.1016/j.cjche.2018.12.003
10.1021/acs.iecr.0c05980
10.1007/s11705-021-2047-9
10.1016/j.cep.2018.05.007
10.1016/j.energy.2024.133430
10.1016/j.cogsc.2017.03.012
10.1016/j.seppur.2024.127893
10.1016/S1385-8947(00)00144-3
10.1016/j.memsci.2024.123593
10.1016/j.jclepro.2020.121557
10.1016/j.cep.2021.108358
10.1016/j.cep.2023.109519
10.1021/acs.iecr.9b05476
10.1016/j.seppur.2021.120368
10.3390/e24101438
10.1021/acs.iecr.7b02923
10.1021/es049795q
10.1016/j.fuel.2025.135663
10.1016/j.psep.2021.11.055
10.1016/j.jclepro.2020.125598
10.1016/j.seppur.2021.118978
10.1016/S1383-5866(03)00198-9
10.1021/ie901157g
10.1016/j.energy.2020.117095
10.1016/j.memsci.2014.07.068
10.1002/aic.15060
10.1016/j.cej.2013.08.054
10.1016/j.energy.2021.120339
10.1016/j.ces.2018.09.036
10.1016/j.seppur.2024.129745
10.1021/ie061480r
10.1016/j.cherd.2020.06.020
10.1021/ie403964q
10.1016/j.seppur.2019.03.074
10.1021/ie3035898
10.1016/j.ces.2022.117924
10.1126/science.aab0530
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.seppur.2025.135983
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_seppur_2025_135983
S1383586625045800
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABNUV
ABXRA
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
~G-
~HD
9DU
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FGOYB
HZ~
R2-
ID FETCH-LOGICAL-c172t-9c3791c9d9d09e7d9b1a662ba9e1666c3e6ecb236c46126b9a5d777adeac04ba3
ISSN 1383-5866
IngestDate Thu Nov 27 00:21:37 EST 2025
Sat Nov 29 17:10:10 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Reactive distillation
Process optimization
Process intensification
Hybrid separation
Exergy analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c172t-9c3791c9d9d09e7d9b1a662ba9e1666c3e6ecb236c46126b9a5d777adeac04ba3
ParticipantIDs crossref_primary_10_1016_j_seppur_2025_135983
elsevier_sciencedirect_doi_10_1016_j_seppur_2025_135983
PublicationCentury 2000
PublicationDate 2026-02-26
PublicationDateYYYYMMDD 2026-02-26
PublicationDate_xml – month: 02
  year: 2026
  text: 2026-02-26
  day: 26
PublicationDecade 2020
PublicationTitle Separation and purification technology
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pattison, Gupta, Baldea (bb0180) 2015; 62
Jia, Qian, Liu, Luo, Yuan (bb0185) 2022; 260
Wang, Li, Yu, Wang, Chen, Zhu, Xiangli, Nan, Liu, Jin (bb0240) 2025; 717
Yu, Chen, Chien (bb0025) 2018; 57
Kim, Lee, Shin, Lee, Lee (bb0230) 2023; 192
You, Zhou, Shi, Tang, Cui, Qiao, Xia (bb0175) 2024; 350
Wu, Chien (bb0030) 2019; 59
Ma, Luo, Yuan (bb0190) 2019; 195
Shi, Liu, Yu, Yang, Sun, Shen, Lee, Ren (bb0140) 2022; 156
Holtbruegge, Kuhlmann, Lutze (bb0050) 2015; 93
Shi, Wang, Wong, Huang (bb0070) 2017; 56
Huang, Li, Wang, Jiang, Qiu (bb0055) 2014; 53
Wang, Zhao, Li, Zhao, Xiao, Wei, Sun (bb0065) 2007; 46
Jin, Xie, Zhu, Nan, Xiangli, Liu, Jin (bb0235) 2025; 716
Wang, Li, Yang, Zhao, Cui, Qi, Zhu, Ma, Wang (bb0265) 2020; 264
Deng, Shi, Yao, Zhang (bb0105) 2019; 2
Aresta, Galatola (bb0020) 1999; 7
Ramírez-Márquez, Contreras-Zarazúa, Martín, Segovia-Hernández (bb0195) 2019; 7
Hsu, Hsiao, Chien (bb0160) 2010; 49
Luyben (bb0220) 2009; 48
Zhao, Li, Wang (bb0120) 2024; 311
Wu, Meng, Yao, Liu, Xu, Zhu, Wang, Gao (bb0200) 2020; 8
Fang, Cao (bb0255) 2000; 78
Wang, Zhang, Zhang, Gao, Stewart (bb0215) 2019; 221
Fang, Xiao (bb0040) 2004; 34
Huang, Lin, Wang, Ye, Li (bb0115) 2017; 25
Tan, Wang, Xu, Sun, Xu, Chen, Chen, Guo (bb0005) 2018; 316
Shen, Su, Zhao, Shan, Zhu, Cui, Wang (bb0100) 2022; 158
Xia, Zhao, Qi, Shi, Cui, Li, Tang, Cui, Li, Qiao (bb0095) 2025; 356
Li, Kiss (bb0150) 2021; 162
Patraşcu, Bîldea, Kiss (bb0085) 2021; 16
Hu, Cheng, Kang, Chen, Yuan, Qi (bb0035) 2018; 129
Vázquez, Javaloyes-Antón, Medrano-García, Ruiz-Femenia, Caballero (bb0135) 2018
Santos, Silva, Loureiro, Rodrigues (bb0010) 2014; 1
Shi, Zhang, Zeng, Ma, Yuan (bb0210) 2020; 196
Gadalla, Olujic, Jansens, Jobson, Smith (bb0260) 2005; 39
Yan, Shen, Wang, Zhu, Cui, Wang (bb0090) 2024; 202
Patraşcu, Bîldea, Kiss (bb0080) 2020; 160
Al-Rabiah, Almutlaq, Bashth, Taher, Alshehri, Alofai, Alshehri (bb0060) 2022; 10
Zhu, Jing, Hao, Wei (bb0165) 2022; 286
Pyo, Park, Chang, Hatti-Kaul (bb0015) 2017; 5
Holtbruegge, Heile, Lutze, Górak (bb0110) 2013; 234
Shen, Zhao, Li, Liu, Chen, Zhu, Cui, Ma, Wang (bb0170) 2021; 273
Zhang, Ding, Shang, Song, Wang (bb0130) 2022; 24
Lee, Lee, Seo, Lee, Lee (bb0145) 2022; 287
Petrescu, Iurian (bb0125) 2025; 399
Ge, Han, Yang, Liu, Liu (bb0205) 2021; 60
Gu, Zhang, Yang, Shen, Deng, Zeng, Zhang (bb0045) 2021; 288
Wu, Hsu, Chien (bb0155) 2013; 52
Liu, Hao, Han, Cao, Wei (bb0250) 2023; 307
Wiranarongkorn, Im-orb, Panpranot, Maréchal, Arpornwichanop (bb0270) 2021; 226
Zhou, Lv, Liu, Jin, Xing (bb0225) 2014; 471
Park, Kamcev, Robeson, Elimelech, Freeman (bb0245) 2017; 356
Wang, Pu, Yang, Wang, Chen, Zhao, Xiao (bb0075) 2019; 27
Shen (10.1016/j.seppur.2025.135983_bb0170) 2021; 273
Wang (10.1016/j.seppur.2025.135983_bb0215) 2019; 221
Fang (10.1016/j.seppur.2025.135983_bb0040) 2004; 34
Wang (10.1016/j.seppur.2025.135983_bb0075) 2019; 27
Vázquez (10.1016/j.seppur.2025.135983_bb0135) 2018
Pyo (10.1016/j.seppur.2025.135983_bb0015) 2017; 5
Jia (10.1016/j.seppur.2025.135983_bb0185) 2022; 260
Yan (10.1016/j.seppur.2025.135983_bb0090) 2024; 202
Holtbruegge (10.1016/j.seppur.2025.135983_bb0110) 2013; 234
Shi (10.1016/j.seppur.2025.135983_bb0140) 2022; 156
Shi (10.1016/j.seppur.2025.135983_bb0210) 2020; 196
Yu (10.1016/j.seppur.2025.135983_bb0025) 2018; 57
Wu (10.1016/j.seppur.2025.135983_bb0030) 2019; 59
Zhou (10.1016/j.seppur.2025.135983_bb0225) 2014; 471
Shen (10.1016/j.seppur.2025.135983_bb0100) 2022; 158
Zhu (10.1016/j.seppur.2025.135983_bb0165) 2022; 286
Zhang (10.1016/j.seppur.2025.135983_bb0130) 2022; 24
Hu (10.1016/j.seppur.2025.135983_bb0035) 2018; 129
Patraşcu (10.1016/j.seppur.2025.135983_bb0085) 2021; 16
Pattison (10.1016/j.seppur.2025.135983_bb0180) 2015; 62
Hsu (10.1016/j.seppur.2025.135983_bb0160) 2010; 49
Wu (10.1016/j.seppur.2025.135983_bb0200) 2020; 8
Xia (10.1016/j.seppur.2025.135983_bb0095) 2025; 356
Wu (10.1016/j.seppur.2025.135983_bb0155) 2013; 52
Huang (10.1016/j.seppur.2025.135983_bb0055) 2014; 53
Ma (10.1016/j.seppur.2025.135983_bb0190) 2019; 195
Petrescu (10.1016/j.seppur.2025.135983_bb0125) 2025; 399
Liu (10.1016/j.seppur.2025.135983_bb0250) 2023; 307
Gadalla (10.1016/j.seppur.2025.135983_bb0260) 2005; 39
Santos (10.1016/j.seppur.2025.135983_bb0010) 2014; 1
Shi (10.1016/j.seppur.2025.135983_bb0070) 2017; 56
You (10.1016/j.seppur.2025.135983_bb0175) 2024; 350
Wang (10.1016/j.seppur.2025.135983_bb0065) 2007; 46
Park (10.1016/j.seppur.2025.135983_bb0245) 2017; 356
Gu (10.1016/j.seppur.2025.135983_bb0045) 2021; 288
Lee (10.1016/j.seppur.2025.135983_bb0145) 2022; 287
Kim (10.1016/j.seppur.2025.135983_bb0230) 2023; 192
Ramírez-Márquez (10.1016/j.seppur.2025.135983_bb0195) 2019; 7
Al-Rabiah (10.1016/j.seppur.2025.135983_bb0060) 2022; 10
Li (10.1016/j.seppur.2025.135983_bb0150) 2021; 162
Holtbruegge (10.1016/j.seppur.2025.135983_bb0050) 2015; 93
Huang (10.1016/j.seppur.2025.135983_bb0115) 2017; 25
Ge (10.1016/j.seppur.2025.135983_bb0205) 2021; 60
Luyben (10.1016/j.seppur.2025.135983_bb0220) 2009; 48
Wang (10.1016/j.seppur.2025.135983_bb0265) 2020; 264
Jin (10.1016/j.seppur.2025.135983_bb0235) 2025; 716
Tan (10.1016/j.seppur.2025.135983_bb0005) 2018; 316
Fang (10.1016/j.seppur.2025.135983_bb0255) 2000; 78
Aresta (10.1016/j.seppur.2025.135983_bb0020) 1999; 7
Deng (10.1016/j.seppur.2025.135983_bb0105) 2019; 2
Patraşcu (10.1016/j.seppur.2025.135983_bb0080) 2020; 160
Zhao (10.1016/j.seppur.2025.135983_bb0120) 2024; 311
Wang (10.1016/j.seppur.2025.135983_bb0240) 2025; 717
Wiranarongkorn (10.1016/j.seppur.2025.135983_bb0270) 2021; 226
References_xml – volume: 46
  start-page: 8972
  year: 2007
  end-page: 8979
  ident: bb0065
  article-title: Modeling of the catalytic distillation process for the synthesis of dimethyl carbonate by urea methanolysis method
  publication-title: Ind. Eng. Chem. Res.
– volume: 195
  start-page: 381
  year: 2019
  end-page: 398
  ident: bb0190
  article-title: Equation-oriented optimization of reactive distillation systems using pseudo-transient models
  publication-title: Chem. Eng. Sci.
– volume: 717
  year: 2025
  ident: bb0240
  article-title: PDMS membrane incorporated by zeolites with tunable pore chemistry for dimethyl carbonate/methanol azeotropic mixture separation
  publication-title: J. Membr. Sci.
– volume: 39
  start-page: 6860
  year: 2005
  end-page: 6870
  ident: bb0260
  article-title: Reducing CO
  publication-title: Environ. Sci. Technol.
– volume: 311
  year: 2024
  ident: bb0120
  article-title: Simulation and optimization of DMC synthesis process based on conventional and advanced exergy analyses
  publication-title: Energy
– volume: 7
  start-page: 181
  year: 1999
  end-page: 193
  ident: bb0020
  article-title: Life cycle analysis applied to the assessment of the environmental impact of alternative synthetic processes. The dimethylcarbonate case: part 1
  publication-title: J. Clean. Prod.
– volume: 52
  start-page: 5384
  year: 2013
  end-page: 5399
  ident: bb0155
  article-title: Critical assessment of the energy-saving potential of an extractive dividing-wall column
  publication-title: Ind. Eng. Chem. Res.
– volume: 196
  year: 2020
  ident: bb0210
  article-title: Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling azeotrope
  publication-title: Energy
– volume: 1
  start-page: 214
  year: 2014
  end-page: 229
  ident: bb0010
  article-title: Review for the direct synthesis of dimethyl carbonate
  publication-title: Chem. Biochem. Eng. Rev.
– volume: 156
  year: 2022
  ident: bb0140
  article-title: Improved design of heat-pump extractive distillation based on the process optimization and multi-criteria sustainability analysis
  publication-title: Comput. Chem. Eng.
– volume: 158
  start-page: 181
  year: 2022
  end-page: 188
  ident: bb0100
  article-title: Molecular simulation and optimization of extractive distillation for separation of dimethyl carbonate and methanol
  publication-title: Process. Saf. Environ. Prot.
– volume: 62
  start-page: 704
  year: 2015
  end-page: 716
  ident: bb0180
  article-title: Equation-oriented optimization of process flowsheets with dividing-wall columns
  publication-title: AICHE J.
– volume: 129
  start-page: 109
  year: 2018
  end-page: 117
  ident: bb0035
  article-title: Analysis of direct synthesis of dimethyl carbonate from methanol and CO
  publication-title: Chem. Eng. Process.
– volume: 93
  start-page: 411
  year: 2015
  end-page: 431
  ident: bb0050
  article-title: Process analysis and economic optimization of intensified process alternatives for simultaneous industrial scale production of dimethyl carbonate and propylene glycol
  publication-title: Chem. Eng. Res. Des.
– volume: 264
  year: 2020
  ident: bb0265
  article-title: Theoretical assessment of ketone ammoximation production using thermodynamic, techno-economic, and life cycle environmental analyses
  publication-title: J. Clean. Prod.
– volume: 162
  year: 2021
  ident: bb0150
  article-title: Novel pervaporation-assisted pressure swing reactive distillation process for intensified synthesis of dimethyl carbonate
  publication-title: Chem. Eng. Process.
– volume: 48
  start-page: 3484
  year: 2009
  end-page: 3495
  ident: bb0220
  article-title: Control of a column/pervaporation process for separating the ethanol/water azeotrope
  publication-title: Ind. Eng. Chem. Res.
– volume: 49
  start-page: 735
  year: 2010
  end-page: 749
  ident: bb0160
  article-title: Design and control of dimethyl carbonate-methanol separation via extractive distillation in the dimethyl carbonate reactive-distillation process
  publication-title: Ind. Eng. Chem. Res.
– volume: 226
  year: 2021
  ident: bb0270
  article-title: Exergy and exergoeconomic analyses of sustainable furfural production via reactive distillation
  publication-title: Energy
– volume: 27
  start-page: 1879
  year: 2019
  end-page: 1887
  ident: bb0075
  article-title: Process design and economic optimization for the indirect synthesis of dimethyl carbonate from urea and methanol
  publication-title: Chin. J. Chem. Eng.
– volume: 221
  start-page: 1
  year: 2019
  end-page: 11
  ident: bb0215
  article-title: Energy-saving hybrid processes combining pressure-swing reactive distillation and pervaporation membrane for n-propyl acetate production
  publication-title: Sep. Purif. Technol.
– volume: 24
  year: 2022
  ident: bb0130
  article-title: Co-production of dimethyl carbonate, dimethoxymethane and dimethyl ether from methanol: process design and exergy analysis
  publication-title: Entropy
– volume: 356
  year: 2025
  ident: bb0095
  article-title: Kinetic insights into energy-saving and low-carbon reactive distillation processes for the transesterification to dimethyl carbonate
  publication-title: Sep. Purif. Technol.
– volume: 10
  start-page: 2094
  year: 2022
  ident: bb0060
  article-title: An intensified green process for the coproduction of DMC and DMO by the oxidative carbonylation of methanol
  publication-title: Processes
– volume: 8
  start-page: 4561
  year: 2020
  end-page: 4571
  ident: bb0200
  article-title: Mechanism analysis, economic optimization, and environmental assessment of hybrid extractive distillation-pervaporation processes for dehydration of n-propanol
  publication-title: ACS Sustain. Chem. Eng.
– volume: 192
  year: 2023
  ident: bb0230
  article-title: Direct production of diethyl carbonate from ethylene carbonate and ethanol by energy-efficient intensification of reaction and separation
  publication-title: Chem. Eng. Process.
– volume: 350
  year: 2024
  ident: bb0175
  article-title: Energy-saving extractive distillation system using o-xylene as an entrainer for the high-purity separation of dimethyl carbonate/methanol azeotrope
  publication-title: Sep. Purif. Technol.
– volume: 234
  start-page: 448
  year: 2013
  end-page: 463
  ident: bb0110
  article-title: Synthesis of dimethyl carbonate and propylene glycol in a pilot-scale reactive distillation column: experimental investigation, modeling and process analysis
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 5355
  year: 2019
  end-page: 5366
  ident: bb0195
  article-title: Safety, economic, and environmental optimization applied to three processes for the production of solar-grade silicon
  publication-title: ACS Sustain. Chem. Eng.
– volume: 34
  start-page: 255
  year: 2004
  end-page: 263
  ident: bb0040
  article-title: Experimental and modeling studies on a homogeneous reactive distillation system for dimethyl carbonate synthesis by transesterification
  publication-title: Sep. Purif. Technol.
– volume: 25
  start-page: 1079
  year: 2017
  end-page: 1090
  ident: bb0115
  article-title: Optimization and control of a reactive distillation process for the synthesis of dimethyl carbonate
  publication-title: Chin. J. Chem. Eng.
– start-page: 731
  year: 2018
  end-page: 736
  ident: bb0135
  article-title: Dimethyl carbonate production process from urea and methanol, in: A. Friedl, J.J. Klemeš, S. Radl, P.S. Varbanov, T.E. Wallek (Eds.) 28th European Symposium on Computer Aided Process Engineering
  publication-title: Graz
– volume: 59
  start-page: 1234
  year: 2019
  end-page: 1248
  ident: bb0030
  article-title: CO
  publication-title: Ind. Eng. Chem. Res.
– volume: 78
  start-page: 237
  year: 2000
  end-page: 241
  ident: bb0255
  article-title: Intrinsic kinetics of direct oxidative carbonylation of vapor phase methanol to dimethyl carbonate over cu-based catalysts
  publication-title: Chem. Eng. J.
– volume: 56
  start-page: 11531
  year: 2017
  end-page: 11544
  ident: bb0070
  article-title: Novel process design of synthesizing propylene carbonate for dimethyl carbonate production by indirect alcoholysis of urea
  publication-title: Ind. Eng. Chem. Res.
– volume: 273
  year: 2021
  ident: bb0170
  article-title: Design and optimization of reactive dividing-wall extractive distillation process for dimethyl carbonate synthesis based on quantum chemistry and molecular dynamics calculation
  publication-title: Sep. Purif. Technol.
– volume: 260
  year: 2022
  ident: bb0185
  article-title: A new efficiency relaxation model for rigorous stage number optimization of distillation columns
  publication-title: Chem. Eng. Sci.
– volume: 716
  year: 2025
  ident: bb0235
  article-title: Fabrication of novel mixed-matrix membrane and its pervaporation process integration with distillation for energy-saving separation of DMC/methanol azeotropic mixture
  publication-title: J. Membr. Sci.
– volume: 287
  year: 2022
  ident: bb0145
  article-title: Enhanced energy efficiency and reduced CO
  publication-title: Sep. Purif. Technol.
– volume: 286
  year: 2022
  ident: bb0165
  article-title: Inherent safer, eco-friendly and energy saving vapor recompression assisted extractive dividing-wall column process for the separation of minimum-boiling azeotrope
  publication-title: Sep. Purif. Technol.
– volume: 307
  year: 2023
  ident: bb0250
  article-title: Novel energy saving and economic extractive distillation process via integrating two-feed preheating strategy and heat pump vapor recompression
  publication-title: Sep. Purif. Technol.
– volume: 57
  start-page: 639
  year: 2018
  end-page: 652
  ident: bb0025
  article-title: Assessment on CO
  publication-title: Ind. Eng. Chem. Res.
– volume: 288
  year: 2021
  ident: bb0045
  article-title: Technical-environmental assessment of CO
  publication-title: J. Clean. Prod.
– volume: 60
  start-page: 1784
  year: 2021
  end-page: 1798
  ident: bb0205
  article-title: Optimal design, proportional-integral, and model predictive control of intensified process for formic acid production II: reactive dividing wall column without uncontrollable vapor split
  publication-title: Ind. Eng. Chem. Res.
– volume: 5
  start-page: 61
  year: 2017
  end-page: 66
  ident: bb0015
  article-title: Dimethyl carbonate as a green chemical
  publication-title: Curr. Opin. Green. Sust.
– volume: 399
  year: 2025
  ident: bb0125
  article-title: Green dimethyl carbonate production feasibility based on technical and environmental considerations
  publication-title: Fuel
– volume: 16
  start-page: 316
  year: 2021
  end-page: 331
  ident: bb0085
  article-title: Novel eco-efficient reactive distillation process for dimethyl carbonate production by indirect alcoholysis of urea
  publication-title: Front. Chem. Sci. Eng.
– volume: 356
  year: 2017
  ident: bb0245
  article-title: Maximizing the right stuff: The trade-off between membrane permeability and selectivity
  publication-title: Science
– volume: 2
  start-page: 198
  year: 2019
  end-page: 212
  ident: bb0105
  article-title: A review on transesterification of propylene carbonate and methanol for dimethyl carbonate synthesis
  publication-title: Carbon. Res. Convers.
– volume: 202
  year: 2024
  ident: bb0090
  article-title: Green separation of azeotropes in dimethyl carbonate synthesis by transesterification
  publication-title: Renew. Sust. Energ. Rev.
– volume: 160
  start-page: 486
  year: 2020
  end-page: 498
  ident: bb0080
  article-title: Novel eco-efficient process for dimethyl carbonate production by indirect alcoholysis of urea
  publication-title: Chem. Eng. Res. Des.
– volume: 471
  start-page: 47
  year: 2014
  end-page: 55
  ident: bb0225
  article-title: PDMS/PVDF composite pervaporation membrane for the separation of dimethyl carbonate from a methanol solution
  publication-title: J. Membr. Sci.
– volume: 316
  start-page: 2
  year: 2018
  end-page: 12
  ident: bb0005
  article-title: Review on the synthesis of dimethyl carbonate
  publication-title: Catal. Today
– volume: 53
  start-page: 3321
  year: 2014
  end-page: 3328
  ident: bb0055
  article-title: Novel procedure for the synthesis of dimethyl carbonate by reactive distillation
  publication-title: Ind. Eng. Chem. Res.
– volume: 8
  start-page: 4561
  issue: 11
  year: 2020
  ident: 10.1016/j.seppur.2025.135983_bb0200
  article-title: Mechanism analysis, economic optimization, and environmental assessment of hybrid extractive distillation-pervaporation processes for dehydration of n-propanol
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c00263
– volume: 287
  year: 2022
  ident: 10.1016/j.seppur.2025.135983_bb0145
  article-title: Enhanced energy efficiency and reduced CO2 emissions by hybrid heat integration in dimethyl carbonate production systems
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.120598
– volume: 7
  start-page: 5355
  issue: 5
  year: 2019
  ident: 10.1016/j.seppur.2025.135983_bb0195
  article-title: Safety, economic, and environmental optimization applied to three processes for the production of solar-grade silicon
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06375
– volume: 10
  start-page: 2094
  issue: 10
  year: 2022
  ident: 10.1016/j.seppur.2025.135983_bb0060
  article-title: An intensified green process for the coproduction of DMC and DMO by the oxidative carbonylation of methanol
  publication-title: Processes
  doi: 10.3390/pr10102094
– volume: 56
  start-page: 11531
  issue: 40
  year: 2017
  ident: 10.1016/j.seppur.2025.135983_bb0070
  article-title: Novel process design of synthesizing propylene carbonate for dimethyl carbonate production by indirect alcoholysis of urea
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b02341
– volume: 156
  year: 2022
  ident: 10.1016/j.seppur.2025.135983_bb0140
  article-title: Improved design of heat-pump extractive distillation based on the process optimization and multi-criteria sustainability analysis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107552
– volume: 25
  start-page: 1079
  issue: 8
  year: 2017
  ident: 10.1016/j.seppur.2025.135983_bb0115
  article-title: Optimization and control of a reactive distillation process for the synthesis of dimethyl carbonate
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2017.03.039
– volume: 307
  year: 2023
  ident: 10.1016/j.seppur.2025.135983_bb0250
  article-title: Novel energy saving and economic extractive distillation process via integrating two-feed preheating strategy and heat pump vapor recompression
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.122791
– volume: 48
  start-page: 3484
  issue: 7
  year: 2009
  ident: 10.1016/j.seppur.2025.135983_bb0220
  article-title: Control of a column/pervaporation process for separating the ethanol/water azeotrope
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie801428s
– volume: 202
  year: 2024
  ident: 10.1016/j.seppur.2025.135983_bb0090
  article-title: Green separation of azeotropes in dimethyl carbonate synthesis by transesterification
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2024.114687
– volume: 7
  start-page: 181
  issue: 3
  year: 1999
  ident: 10.1016/j.seppur.2025.135983_bb0020
  article-title: Life cycle analysis applied to the assessment of the environmental impact of alternative synthetic processes. The dimethylcarbonate case: part 1
  publication-title: J. Clean. Prod.
  doi: 10.1016/S0959-6526(98)00074-2
– volume: 316
  start-page: 2
  issue: 1
  year: 2018
  ident: 10.1016/j.seppur.2025.135983_bb0005
  article-title: Review on the synthesis of dimethyl carbonate
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.02.021
– volume: 716
  year: 2025
  ident: 10.1016/j.seppur.2025.135983_bb0235
  article-title: Fabrication of novel mixed-matrix membrane and its pervaporation process integration with distillation for energy-saving separation of DMC/methanol azeotropic mixture
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2024.123520
– volume: 93
  start-page: 411
  year: 2015
  ident: 10.1016/j.seppur.2025.135983_bb0050
  article-title: Process analysis and economic optimization of intensified process alternatives for simultaneous industrial scale production of dimethyl carbonate and propylene glycol
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2014.05.002
– volume: 27
  start-page: 1879
  issue: 8
  year: 2019
  ident: 10.1016/j.seppur.2025.135983_bb0075
  article-title: Process design and economic optimization for the indirect synthesis of dimethyl carbonate from urea and methanol
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2018.12.003
– volume: 60
  start-page: 1784
  issue: 4
  year: 2021
  ident: 10.1016/j.seppur.2025.135983_bb0205
  article-title: Optimal design, proportional-integral, and model predictive control of intensified process for formic acid production II: reactive dividing wall column without uncontrollable vapor split
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c05980
– start-page: 731
  year: 2018
  ident: 10.1016/j.seppur.2025.135983_bb0135
  article-title: Dimethyl carbonate production process from urea and methanol, in: A. Friedl, J.J. Klemeš, S. Radl, P.S. Varbanov, T.E. Wallek (Eds.) 28th European Symposium on Computer Aided Process Engineering
  publication-title: Graz
– volume: 2
  start-page: 198
  issue: 3
  year: 2019
  ident: 10.1016/j.seppur.2025.135983_bb0105
  article-title: A review on transesterification of propylene carbonate and methanol for dimethyl carbonate synthesis
  publication-title: Carbon. Res. Convers.
– volume: 16
  start-page: 316
  issue: 2
  year: 2021
  ident: 10.1016/j.seppur.2025.135983_bb0085
  article-title: Novel eco-efficient reactive distillation process for dimethyl carbonate production by indirect alcoholysis of urea
  publication-title: Front. Chem. Sci. Eng.
  doi: 10.1007/s11705-021-2047-9
– volume: 129
  start-page: 109
  year: 2018
  ident: 10.1016/j.seppur.2025.135983_bb0035
  article-title: Analysis of direct synthesis of dimethyl carbonate from methanol and CO2 intensified by in-situ hydration-assisted reactive distillation with side reactor
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2018.05.007
– volume: 311
  year: 2024
  ident: 10.1016/j.seppur.2025.135983_bb0120
  article-title: Simulation and optimization of DMC synthesis process based on conventional and advanced exergy analyses
  publication-title: Energy
  doi: 10.1016/j.energy.2024.133430
– volume: 5
  start-page: 61
  year: 2017
  ident: 10.1016/j.seppur.2025.135983_bb0015
  article-title: Dimethyl carbonate as a green chemical
  publication-title: Curr. Opin. Green. Sust.
  doi: 10.1016/j.cogsc.2017.03.012
– volume: 350
  year: 2024
  ident: 10.1016/j.seppur.2025.135983_bb0175
  article-title: Energy-saving extractive distillation system using o-xylene as an entrainer for the high-purity separation of dimethyl carbonate/methanol azeotrope
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.127893
– volume: 78
  start-page: 237
  issue: 2
  year: 2000
  ident: 10.1016/j.seppur.2025.135983_bb0255
  article-title: Intrinsic kinetics of direct oxidative carbonylation of vapor phase methanol to dimethyl carbonate over cu-based catalysts
  publication-title: Chem. Eng. J.
  doi: 10.1016/S1385-8947(00)00144-3
– volume: 717
  year: 2025
  ident: 10.1016/j.seppur.2025.135983_bb0240
  article-title: PDMS membrane incorporated by zeolites with tunable pore chemistry for dimethyl carbonate/methanol azeotropic mixture separation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2024.123593
– volume: 264
  year: 2020
  ident: 10.1016/j.seppur.2025.135983_bb0265
  article-title: Theoretical assessment of ketone ammoximation production using thermodynamic, techno-economic, and life cycle environmental analyses
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.121557
– volume: 162
  year: 2021
  ident: 10.1016/j.seppur.2025.135983_bb0150
  article-title: Novel pervaporation-assisted pressure swing reactive distillation process for intensified synthesis of dimethyl carbonate
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2021.108358
– volume: 192
  year: 2023
  ident: 10.1016/j.seppur.2025.135983_bb0230
  article-title: Direct production of diethyl carbonate from ethylene carbonate and ethanol by energy-efficient intensification of reaction and separation
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2023.109519
– volume: 59
  start-page: 1234
  issue: 3
  year: 2019
  ident: 10.1016/j.seppur.2025.135983_bb0030
  article-title: CO2 utilization feasibility study: dimethyl carbonate direct synthesis process with dehydration reactive distillation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b05476
– volume: 286
  year: 2022
  ident: 10.1016/j.seppur.2025.135983_bb0165
  article-title: Inherent safer, eco-friendly and energy saving vapor recompression assisted extractive dividing-wall column process for the separation of minimum-boiling azeotrope
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.120368
– volume: 24
  issue: 10
  year: 2022
  ident: 10.1016/j.seppur.2025.135983_bb0130
  article-title: Co-production of dimethyl carbonate, dimethoxymethane and dimethyl ether from methanol: process design and exergy analysis
  publication-title: Entropy
  doi: 10.3390/e24101438
– volume: 57
  start-page: 639
  issue: 2
  year: 2018
  ident: 10.1016/j.seppur.2025.135983_bb0025
  article-title: Assessment on CO2 utilization through rigorous simulation: converting CO2 to dimethyl carbonate
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b02923
– volume: 39
  start-page: 6860
  issue: 17
  year: 2005
  ident: 10.1016/j.seppur.2025.135983_bb0260
  article-title: Reducing CO2 emissions and energy consumption of heat-integrated distillation systems
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049795q
– volume: 399
  year: 2025
  ident: 10.1016/j.seppur.2025.135983_bb0125
  article-title: Green dimethyl carbonate production feasibility based on technical and environmental considerations
  publication-title: Fuel
  doi: 10.1016/j.fuel.2025.135663
– volume: 158
  start-page: 181
  year: 2022
  ident: 10.1016/j.seppur.2025.135983_bb0100
  article-title: Molecular simulation and optimization of extractive distillation for separation of dimethyl carbonate and methanol
  publication-title: Process. Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.11.055
– volume: 288
  year: 2021
  ident: 10.1016/j.seppur.2025.135983_bb0045
  article-title: Technical-environmental assessment of CO2 conversion process to dimethyl carbonate/ethylene glycol
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.125598
– volume: 273
  year: 2021
  ident: 10.1016/j.seppur.2025.135983_bb0170
  article-title: Design and optimization of reactive dividing-wall extractive distillation process for dimethyl carbonate synthesis based on quantum chemistry and molecular dynamics calculation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118978
– volume: 34
  start-page: 255
  issue: 1–3
  year: 2004
  ident: 10.1016/j.seppur.2025.135983_bb0040
  article-title: Experimental and modeling studies on a homogeneous reactive distillation system for dimethyl carbonate synthesis by transesterification
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/S1383-5866(03)00198-9
– volume: 49
  start-page: 735
  issue: 2
  year: 2010
  ident: 10.1016/j.seppur.2025.135983_bb0160
  article-title: Design and control of dimethyl carbonate-methanol separation via extractive distillation in the dimethyl carbonate reactive-distillation process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie901157g
– volume: 196
  year: 2020
  ident: 10.1016/j.seppur.2025.135983_bb0210
  article-title: Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling azeotrope
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117095
– volume: 471
  start-page: 47
  year: 2014
  ident: 10.1016/j.seppur.2025.135983_bb0225
  article-title: PDMS/PVDF composite pervaporation membrane for the separation of dimethyl carbonate from a methanol solution
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.07.068
– volume: 62
  start-page: 704
  issue: 3
  year: 2015
  ident: 10.1016/j.seppur.2025.135983_bb0180
  article-title: Equation-oriented optimization of process flowsheets with dividing-wall columns
  publication-title: AICHE J.
  doi: 10.1002/aic.15060
– volume: 234
  start-page: 448
  year: 2013
  ident: 10.1016/j.seppur.2025.135983_bb0110
  article-title: Synthesis of dimethyl carbonate and propylene glycol in a pilot-scale reactive distillation column: experimental investigation, modeling and process analysis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.08.054
– volume: 226
  year: 2021
  ident: 10.1016/j.seppur.2025.135983_bb0270
  article-title: Exergy and exergoeconomic analyses of sustainable furfural production via reactive distillation
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120339
– volume: 195
  start-page: 381
  year: 2019
  ident: 10.1016/j.seppur.2025.135983_bb0190
  article-title: Equation-oriented optimization of reactive distillation systems using pseudo-transient models
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.09.036
– volume: 356
  year: 2025
  ident: 10.1016/j.seppur.2025.135983_bb0095
  article-title: Kinetic insights into energy-saving and low-carbon reactive distillation processes for the transesterification to dimethyl carbonate
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.129745
– volume: 46
  start-page: 8972
  issue: 26
  year: 2007
  ident: 10.1016/j.seppur.2025.135983_bb0065
  article-title: Modeling of the catalytic distillation process for the synthesis of dimethyl carbonate by urea methanolysis method
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie061480r
– volume: 160
  start-page: 486
  year: 2020
  ident: 10.1016/j.seppur.2025.135983_bb0080
  article-title: Novel eco-efficient process for dimethyl carbonate production by indirect alcoholysis of urea
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2020.06.020
– volume: 53
  start-page: 3321
  issue: 8
  year: 2014
  ident: 10.1016/j.seppur.2025.135983_bb0055
  article-title: Novel procedure for the synthesis of dimethyl carbonate by reactive distillation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie403964q
– volume: 221
  start-page: 1
  year: 2019
  ident: 10.1016/j.seppur.2025.135983_bb0215
  article-title: Energy-saving hybrid processes combining pressure-swing reactive distillation and pervaporation membrane for n-propyl acetate production
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.03.074
– volume: 52
  start-page: 5384
  issue: 15
  year: 2013
  ident: 10.1016/j.seppur.2025.135983_bb0155
  article-title: Critical assessment of the energy-saving potential of an extractive dividing-wall column
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie3035898
– volume: 260
  year: 2022
  ident: 10.1016/j.seppur.2025.135983_bb0185
  article-title: A new efficiency relaxation model for rigorous stage number optimization of distillation columns
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.117924
– volume: 356
  issue: 6343
  year: 2017
  ident: 10.1016/j.seppur.2025.135983_bb0245
  article-title: Maximizing the right stuff: The trade-off between membrane permeability and selectivity
  publication-title: Science
  doi: 10.1126/science.aab0530
– volume: 1
  start-page: 214
  issue: 5
  year: 2014
  ident: 10.1016/j.seppur.2025.135983_bb0010
  article-title: Review for the direct synthesis of dimethyl carbonate
  publication-title: Chem. Biochem. Eng. Rev.
SSID ssj0017182
Score 2.482126
Snippet Dimethyl carbonate (DMC), as electrolyte solvent with strong ionic conductivity and excellent stability, is widely used in lithium batteries. In addition, DMC...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 135983
SubjectTerms Exergy analysis
Hybrid separation
Process intensification
Process optimization
Reactive distillation
Title Optimal design and energy intensity comparison of industrialized routes for electronic-grade dimethyl carbonate synthesis: Toward sustainable strategies
URI https://dx.doi.org/10.1016/j.seppur.2025.135983
Volume 382
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1383-5866
  databaseCode: AIEXJ
  dateStart: 19970519
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017182
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG0NCQc4IFYRElAfuEWOxmu7uUUoCXAISAySb1ZvjowSe-TxRIEv4Wf4t1RvtrMoIgcu1qg0bren3nRX1_IKofepEJpeMoE_EoMDSqSqgImcB2pOZVwBxljITbMJcnycFwX9Npv99bUw56ekafKLC7r8r6oGGShbl87eQ93DoCCAz6B0uILa4fpPiv8Ki8CZDr2Y3AwTHFC-wM-kq4PZLabdB0Hu23fUv8H-7Nq1dsYaLvChSU5w0jGpdmWtW07_OtWM1lw73pXmPAAjclWb3LqFycLdXU3Ksla9Z6OYGsLflSUdd8nQy3Wnc5asoL_h7j9irXXgD_lD9dogs-1HdB8Z32xRM7jV7cem45h18Rb1CXNS5-SITF60raR36zIcpIM0tw1a_MId27ZFbukNNRdhfOuuYB0Uuoh_Ca-zBw9I98avXyXhvrY5DimLPhvuZ2lHKfUopR3lAdqMSEphUd3c_3xQfBnCWLDxm3C7n72v3TQJhjdnc7ttNLF3Fk_RE3dQwfsWYM_QTDXP0eMJfeUL9MdBDVuoYVAktlDDA9TwCDXcVvgq1LCFGgao4etQwx5qeIAaHqD2AVug4QnQ8Ai0l-jH4cHi46fAdfoIBBjQfUBFTGgoqKRyThWRlIcsyyLOqNJhbRGrTAkexZlIwCLPOGWpJITAZJiYJ5zFr9BG0zbqNcIg1IxFlKuQJdqZUEVpJRM4eIcsj5jcQoH_jculJXQp79LtFiJeEaUzSq2xWQK67rzzzT2ftI0ejdDfQRt9t1Zv0UNx3ter7p2D1iXjLrxT
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+and+energy+intensity+comparison+of+industrialized+routes+for+electronic-grade+dimethyl+carbonate+synthesis%3A+Toward+sustainable+strategies&rft.jtitle=Separation+and+purification+technology&rft.au=Gao%2C+Ge&rft.au=Liu%2C+Botan&rft.au=Ge%2C+Xiaolong&rft.au=Yuan%2C+Xigang&rft.date=2026-02-26&rft.issn=1383-5866&rft.volume=382&rft.spage=135983&rft_id=info:doi/10.1016%2Fj.seppur.2025.135983&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seppur_2025_135983
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon