Strong convergence of an inertial Halpern type algorithm in Banach spaces

In this article, we obtain the strong convergence of the new modified Halpern iteration process x n + 1 = α n u + ( 1 - α n ) T n P ( x n + θ n ( x n - x n - 1 ) ) , n = 1 , 2 , 3 , … , to a common fixed point of { T n } , where { T n } n = 1 ∞ is a family of nonexpansive mappings on the closed and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Rendiconti del Circolo matematico di Palermo Ročník 72; číslo 2; s. 1517 - 1526
Hlavní autor: Ranjbar, Sajad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.03.2023
Témata:
ISSN:0009-725X, 1973-4409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article, we obtain the strong convergence of the new modified Halpern iteration process x n + 1 = α n u + ( 1 - α n ) T n P ( x n + θ n ( x n - x n - 1 ) ) , n = 1 , 2 , 3 , … , to a common fixed point of { T n } , where { T n } n = 1 ∞ is a family of nonexpansive mappings on the closed and convex subset C of a Banach space X , P : X ⟶ C is a nonexpansive retraction, { α n } ⊂ [ 0 , 1 ] and { θ n } ⊂ R + . Some applications of this result are also presented.
AbstractList In this article, we obtain the strong convergence of the new modified Halpern iteration process x n + 1 = α n u + ( 1 - α n ) T n P ( x n + θ n ( x n - x n - 1 ) ) , n = 1 , 2 , 3 , … , to a common fixed point of { T n } , where { T n } n = 1 ∞ is a family of nonexpansive mappings on the closed and convex subset C of a Banach space X , P : X ⟶ C is a nonexpansive retraction, { α n } ⊂ [ 0 , 1 ] and { θ n } ⊂ R + . Some applications of this result are also presented.
Author Ranjbar, Sajad
Author_xml – sequence: 1
  givenname: Sajad
  surname: Ranjbar
  fullname: Ranjbar, Sajad
  email: sranjbar@eghlid.ac.ir, sranjbar74@yahoo.com
  organization: Department of Mathematics, Higher Education Center of Eghlid
BookMark eNp9kMFKAzEQhoMo2FZfwFNeIDrJZpvNUYvaQsGDCt5CNjvZbtlml2QV-vZG69nT8DP_NwzfnJyHISAhNxxuOYC6S1wIXjIQguUoNZNnZMa1KpiUoM_JDAA0U6L8uCTzlPYASw6VnpHN6xSH0FI3hC-MLQaHdPDUBtoFjFNne7q2_Ygx0Ok4IrV9O8Ru2h3ynj7YYN2OptE6TFfkwts-4fXfXJD3p8e31ZptX543q_stc1yJiSnppQVfNEJhU5QelJeyRldwqXEJlWgaVF7UrhK28Vz5WmCtS1noAiuVewsiTnddHFKK6M0Yu4ONR8PB_MgwJxkmyzC_MozMUHGCUi6HFqPZD58x5D__o74BbLVlBw
Cites_doi 10.1016/j.na.2006.08.032
10.1090/S0002-9939-1974-0341038-7
10.1016/0022-247X(73)90024-3
10.1512/iumj.1973.22.22041
10.1090/S0002-9904-1970-12486-7
10.1007/BF02761184
10.1016/0022-247X(81)90013-5
10.1016/0022-247X(79)90024-6
10.1073/pnas.54.4.1041
10.2140/pjm.1973.47.341
10.1016/0022-1236(77)90022-2
10.1023/A:1011253113155
10.1016/0022-247X(80)90323-6
10.4064/bc77-0-12
10.1016/j.jmaa.2008.03.028
10.1007/s11228-006-0027-3
10.1016/B978-0-12-434180-7.50033-4
10.1002/mana.19650300312
10.1016/j.cam.2007.07.021
10.1016/j.na.2010.07.031
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022
DBID AAYXX
CITATION
DOI 10.1007/s12215-022-00749-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1973-4409
EndPage 1526
ExternalDocumentID 10_1007_s12215_022_00749_4
GroupedDBID --Z
-EM
-Y2
-~C
-~X
06D
0R~
0VY
123
199
1SB
29P
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
4.4
406
408
40D
5VS
67Z
6NX
78A
875
8TC
8UJ
95.
95~
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AAWCG
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACHXU
ACIWK
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFWTZ
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FSGXE
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
LLZTM
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RSV
RZK
S1Z
S26
S27
S28
S3B
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
YNT
Z45
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ACSTC
ADHKG
AETEA
AFDZB
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
KOV
ID FETCH-LOGICAL-c172t-74f4a0f3d27ed35f07f44bec3149e6082dde7f2bc82adf17fb2eb954393e87ec3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000790315400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0009-725X
IngestDate Sat Nov 29 03:36:07 EST 2025
Fri Feb 21 02:45:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Strong convergence
47H10
Halpern iteration
47H09
Iterative methods
Accretive operator
Fixed point
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c172t-74f4a0f3d27ed35f07f44bec3149e6082dde7f2bc82adf17fb2eb954393e87ec3
PageCount 10
ParticipantIDs crossref_primary_10_1007_s12215_022_00749_4
springer_journals_10_1007_s12215_022_00749_4
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Rendiconti del Circolo matematico di Palermo
PublicationTitleAbbrev Rend. Circ. Mat. Palermo, II. Ser
PublicationYear 2023
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Aoyama, Kimura, Takahashi, Toyoda (CR2) 2007; 67
Reich (CR18) 1977; 26
Khatibzadeh, Rezaei, Ranjbar (CR10) 2021; 5
CR3
Bruck (CR7) 1974; 43
Browder (CR4) 1965; 54
Reich (CR22) 1981; 79
CR8
CR19
Bruck (CR5) 1973; 47
CR14
Kopecka, Reich (CR11) 2007; 77
CR13
CR24
CR12
Reich (CR21) 1980; 75
Reich, Zaslavski (CR23) 2000; 15
Nakajo (CR15) 2006; 7
Bruck (CR6) 1970; 76
Karlovitz (CR9) 1972; 22
Nevanlinna, Reich (CR16) 1979; 32
Reich (CR17) 1973; 44
Reich (CR20) 1979; 67
Alvarez, Attouch (CR1) 2001; 9
S Reich (749_CR17) 1973; 44
749_CR3
749_CR8
RE Bruck (749_CR5) 1973; 47
S Reich (749_CR22) 1981; 79
RE Bruck (749_CR6) 1970; 76
LA Karlovitz (749_CR9) 1972; 22
S Reich (749_CR21) 1980; 75
H Khatibzadeh (749_CR10) 2021; 5
749_CR12
K Nakajo (749_CR15) 2006; 7
E Kopecka (749_CR11) 2007; 77
RE Bruck (749_CR7) 1974; 43
K Aoyama (749_CR2) 2007; 67
F Alvarez (749_CR1) 2001; 9
749_CR14
749_CR13
749_CR24
FE Browder (749_CR4) 1965; 54
749_CR19
S Reich (749_CR18) 1977; 26
S Reich (749_CR23) 2000; 15
S Reich (749_CR20) 1979; 67
O Nevanlinna (749_CR16) 1979; 32
References_xml – volume: 67
  start-page: 2350
  year: 2007
  end-page: 2360
  ident: CR2
  article-title: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2006.08.032
– volume: 43
  start-page: 173
  year: 1974
  end-page: 175
  ident: CR7
  article-title: A characterization of Hilbert space
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1974-0341038-7
– volume: 44
  start-page: 57
  year: 1973
  end-page: 70
  ident: CR17
  article-title: Asymptotic behavior of contractions in Banach spaces
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(73)90024-3
– ident: CR19
– volume: 22
  start-page: 473
  year: 1972
  end-page: 481
  ident: CR9
  article-title: The construction and application of contractive retractions in two-dimensional normed linear spaces
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1973.22.22041
– ident: CR3
– ident: CR14
– volume: 76
  start-page: 384
  year: 1970
  end-page: 386
  ident: CR6
  article-title: Nonexpansive retracts of Banach spaces
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1970-12486-7
– volume: 7
  start-page: 71
  year: 2006
  end-page: 81
  ident: CR15
  article-title: Strong convergence to zeros of accretive operators in Banach spaces
  publication-title: J. Nonlinear Convex Anal.
– ident: CR12
– ident: CR13
– volume: 5
  start-page: 519
  year: 2021
  end-page: 530
  ident: CR10
  article-title: Coercivity conditions, zeros of maximal monotone operators and monotone equilibrium problems
  publication-title: J. Nonlinear Var. Anal.
– volume: 32
  start-page: 44
  year: 1979
  end-page: 58
  ident: CR16
  article-title: Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces
  publication-title: Israel J. Math.
  doi: 10.1007/BF02761184
– volume: 79
  start-page: 113
  year: 1981
  end-page: 126
  ident: CR22
  article-title: On the asymptotic behavior of nonlinear semigroups and the range of accretive operators
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(81)90013-5
– volume: 67
  start-page: 274
  year: 1979
  end-page: 276
  ident: CR20
  article-title: Weak convergence theorems for nonexpansive mappings in Banach spaces
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(79)90024-6
– ident: CR8
– volume: 54
  start-page: 1041
  year: 1965
  end-page: 1044
  ident: CR4
  article-title: Nonexpansive nonlinear operators in a Banach space
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.54.4.1041
– volume: 47
  start-page: 341
  year: 1973
  end-page: 355
  ident: CR5
  article-title: Nonexpansive projections on subsets of Banach spaces
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1973.47.341
– volume: 26
  start-page: 378
  year: 1977
  end-page: 395
  ident: CR18
  article-title: Extension problems for accretive sets in Banach spaces
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(77)90022-2
– volume: 9
  start-page: 3
  year: 2001
  end-page: 11
  ident: CR1
  article-title: An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping
  publication-title: Set Valued Anal.
  doi: 10.1023/A:1011253113155
– volume: 75
  start-page: 287
  year: 1980
  end-page: 292
  ident: CR21
  article-title: Strong convergence theorems for resolvents of accretive operators in Banach space
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(80)90323-6
– ident: CR24
– volume: 15
  start-page: 153
  year: 2000
  end-page: 168
  ident: CR23
  article-title: Infinite products of resolvents of accretive operators. Topological methods in nonlinear analysis
  publication-title: J. Juliusz Schauder Center
– volume: 77
  start-page: 161
  year: 2007
  end-page: 174
  ident: CR11
  article-title: Nonexpansive retracts in Banach spaces
  publication-title: Banach Center Publ.
  doi: 10.4064/bc77-0-12
– volume: 75
  start-page: 287
  year: 1980
  ident: 749_CR21
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(80)90323-6
– ident: 749_CR3
– volume: 43
  start-page: 173
  year: 1974
  ident: 749_CR7
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1974-0341038-7
– volume: 15
  start-page: 153
  year: 2000
  ident: 749_CR23
  publication-title: J. Juliusz Schauder Center
– volume: 44
  start-page: 57
  year: 1973
  ident: 749_CR17
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(73)90024-3
– volume: 9
  start-page: 3
  year: 2001
  ident: 749_CR1
  publication-title: Set Valued Anal.
  doi: 10.1023/A:1011253113155
– volume: 5
  start-page: 519
  year: 2021
  ident: 749_CR10
  publication-title: J. Nonlinear Var. Anal.
– volume: 77
  start-page: 161
  year: 2007
  ident: 749_CR11
  publication-title: Banach Center Publ.
  doi: 10.4064/bc77-0-12
– volume: 76
  start-page: 384
  year: 1970
  ident: 749_CR6
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1970-12486-7
– ident: 749_CR14
  doi: 10.1016/j.jmaa.2008.03.028
– volume: 47
  start-page: 341
  year: 1973
  ident: 749_CR5
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1973.47.341
– volume: 54
  start-page: 1041
  year: 1965
  ident: 749_CR4
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.54.4.1041
– volume: 32
  start-page: 44
  year: 1979
  ident: 749_CR16
  publication-title: Israel J. Math.
  doi: 10.1007/BF02761184
– volume: 79
  start-page: 113
  year: 1981
  ident: 749_CR22
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(81)90013-5
– volume: 26
  start-page: 378
  year: 1977
  ident: 749_CR18
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(77)90022-2
– volume: 67
  start-page: 2350
  year: 2007
  ident: 749_CR2
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2006.08.032
– volume: 67
  start-page: 274
  year: 1979
  ident: 749_CR20
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(79)90024-6
– volume: 22
  start-page: 473
  year: 1972
  ident: 749_CR9
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1973.22.22041
– ident: 749_CR12
  doi: 10.1007/s11228-006-0027-3
– ident: 749_CR19
  doi: 10.1016/B978-0-12-434180-7.50033-4
– ident: 749_CR8
  doi: 10.1002/mana.19650300312
– ident: 749_CR13
  doi: 10.1016/j.cam.2007.07.021
– ident: 749_CR24
  doi: 10.1016/j.na.2010.07.031
– volume: 7
  start-page: 71
  year: 2006
  ident: 749_CR15
  publication-title: J. Nonlinear Convex Anal.
SSID ssj0061089
Score 2.2544875
Snippet In this article, we obtain the strong convergence of the new modified Halpern iteration process x n + 1 = α n u + ( 1 - α n ) T n P ( x n + θ n ( x n - x n - 1...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 1517
SubjectTerms Algebra
Analysis
Applications of Mathematics
Geometry
Mathematics
Mathematics and Statistics
Title Strong convergence of an inertial Halpern type algorithm in Banach spaces
URI https://link.springer.com/article/10.1007/s12215-022-00749-4
Volume 72
WOSCitedRecordID wos000790315400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1973-4409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061089
  issn: 0009-725X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCDb7G-2IM3XWg2m25yVLHUg0WoSm9hs4-2ENOSRH-_s2liKYig5wxhmZ395pvdeQBcaS6UYkJTLdGCkRH7VEqlKDpDZqxnOyG31bAJMRiEo1H0XBeFFU22e_MkWSH1stiNoXuiLvvc-b2I8nXYCFy3GRejD98a_EU-EEbN_DTBglFdKvPzP1bd0epbaOVierv_W9we7NSUktwubGAf1kx2ANtP3_1Yi0N4HLob7zGpcsyrcktDZpbIjLjaPzzkKenLdG7yjLg7WSLT8SyflpN3_E7uZCbVhCD0IKYcwWvv4eW-T-shClQhNymp4JbLjvU1E0b7ge0IyzlunI-hkekiAUB8E5YlKmRSW0_YhJkkCpCn-CYUKHcMrWyWmRMgGHBaX3pSdG3Aje4mIowQMBk3SWg9Y9pw3egyni96ZcTLrshOQTEqKK4UFPM23DSqjOtzU_wifvo38TPYcoPhF9li59Aq8w9zAZvqs5wW-WVlMF8k4rsI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-L8zINvGljTdGkfVRwbbkPYlL2VNE22wezGWv37vXStYyCCPvco4XL53e-S-wC4iblQiomYxhItGBmxS6VUiqIzZNo4puZzkw-bEN2uPxgEL0VRWFpmu5dPkjlSL4vdGLonarPPrd8LKF-HDW7H7NgYvfdW4i_yAT8o56cJ5g2KUpmf_7HqjlbfQnMX09j73-L2YbeglOR-YQMHsKaTQ9jpfPdjTY-g1bM33kOS55jn5ZaaTA2RCbG1f3jIJ6QpJzM9T4i9kyVyMpzOx9noHb-TB5lINSIIPYgpx_DaeOo_NmkxRIEq5CYZFdxwWTNuzISOXc_UhOEcN87F0EjXkQAgvgnDIuUzGRtHmIjpKPCQp7jaFyh3ApVkmuhTIBhwGlc6UtSNx3Vcj4QfIGAyriPfOFpX4bbUZThb9MoIl12RrYJCVFCYKyjkVbgrVRkW5yb9Rfzsb-LXsNXsd9phu9V9PodtOyR-kTl2AZVs_qEvYVN9ZuN0fpUbzxf0hb3s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gIAQH3ojxzIEbRKxpurRHXtMmYJoYoN2qNI9t0uimrvD7cfpgTEJIiHOtKnIc-3Piz0boTDEuJeWKKAEWDIjYJUJISSAYUm0cU_OZyYZN8Hbb7_WCzjcWf1btXj5J5pwG26UpTi8nylzOiG8UQhWxleg2BgaELaIlBpmMLep66r6WvhiwgR-Us9Q49XoFbebnf8yHpvl30SzcNDb-v9BNtF5ATXyV28YWWtDxNlp7_OrTOt1Bra69Ce_jrPY8o2FqPDZYxNhyAuHwj3BTjCY6ibG9q8Vi1B8nw3TwBt_xtYiFHGBwSeBrdtFL4-75pkmK4QpEAmZJCWeGiZpxFeVauZ6pccMYbKgLKZOuAzAAv8cNjaRPhTIONxHVUeABfnG1z0FuD1Xicaz3EYZE1LjCEbxuPKZVPeJ-AI6UMh35xtG6is5LvYaTvIdGOOuWbBUUgoLCTEEhq6KLUq1hcZ6mv4gf_E38FK10bhvhQ6t9f4hW7ez4vKDsCFXS5F0fo2X5kQ6nyUlmR5-_O8bQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+convergence+of+an+inertial+Halpern+type+algorithm+in+Banach+spaces&rft.jtitle=Rendiconti+del+Circolo+matematico+di+Palermo&rft.au=Ranjbar%2C+Sajad&rft.date=2023-03-01&rft.issn=0009-725X&rft.eissn=1973-4409&rft.volume=72&rft.issue=2&rft.spage=1517&rft.epage=1526&rft_id=info:doi/10.1007%2Fs12215-022-00749-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12215_022_00749_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-725X&client=summon