Revisiting complex azeotropic distillation design: How feed composition can change separation sequences

The design of complex azeotropic distillation system are typically based on a fixed nominal feed composition, i.e., assuming the same process setup remains valid under expected disturbances. This sequential “control after design” strategy often overlooks a critical question: can variations in feed c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Separation and purification technology Jg. 382; S. 135963
Hauptverfasser: Yang, Zhenning, Gao, Tian, Yang, Ao, Sun, Shirui, Shi, Tao, Li, Zhongmei, Du, Wenli, Lin, Rongsheng, Kong, Zong Yang, Shen, Weifeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 26.02.2026
Schlagworte:
ISSN:1383-5866
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The design of complex azeotropic distillation system are typically based on a fixed nominal feed composition, i.e., assuming the same process setup remains valid under expected disturbances. This sequential “control after design” strategy often overlooks a critical question: can variations in feed composition fundamentally alter the optimal separation sequence? In this work, we investigates the influence of feed composition on the optimal design and performance of a triple-column pressure-swing distillation with decanter (TCPSD-D) for multi-azeotropes system. Three configurations were developed under two different feed compositions to explore how product sequence, pressure requirements, and utility usage shift with changing feed conditions. While two configurations based on the same feed required pressure manipulation to alter the separation order, a third configuration using a different feed achieved the same sequence without elevated pressure. Optimization results revealed that although all columns in the third configuration operated with low-pressure steam, the use of chilled water in a vacuum condenser led to the highest overall cost. In contrast, the first configuration demonstrated the best cost–energy balance. These findings highlight the critical role of feed composition in early-stage process design, where it can fundamentally influence separation feasibility, utility strategy, and economic outcomes.
AbstractList The design of complex azeotropic distillation system are typically based on a fixed nominal feed composition, i.e., assuming the same process setup remains valid under expected disturbances. This sequential “control after design” strategy often overlooks a critical question: can variations in feed composition fundamentally alter the optimal separation sequence? In this work, we investigates the influence of feed composition on the optimal design and performance of a triple-column pressure-swing distillation with decanter (TCPSD-D) for multi-azeotropes system. Three configurations were developed under two different feed compositions to explore how product sequence, pressure requirements, and utility usage shift with changing feed conditions. While two configurations based on the same feed required pressure manipulation to alter the separation order, a third configuration using a different feed achieved the same sequence without elevated pressure. Optimization results revealed that although all columns in the third configuration operated with low-pressure steam, the use of chilled water in a vacuum condenser led to the highest overall cost. In contrast, the first configuration demonstrated the best cost–energy balance. These findings highlight the critical role of feed composition in early-stage process design, where it can fundamentally influence separation feasibility, utility strategy, and economic outcomes.
ArticleNumber 135963
Author Yang, Zhenning
Sun, Shirui
Du, Wenli
Lin, Rongsheng
Kong, Zong Yang
Shen, Weifeng
Shi, Tao
Yang, Ao
Li, Zhongmei
Gao, Tian
Author_xml – sequence: 1
  givenname: Zhenning
  surname: Yang
  fullname: Yang, Zhenning
  organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
– sequence: 2
  givenname: Tian
  surname: Gao
  fullname: Gao, Tian
  organization: Chongqing Technology Transfer Research Institute Co., Ltd, Chongqing 401120, PR China
– sequence: 3
  givenname: Ao
  surname: Yang
  fullname: Yang, Ao
  organization: College of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing, PR China
– sequence: 4
  givenname: Shirui
  surname: Sun
  fullname: Sun, Shirui
  organization: School of Chemistry and Chemical Engineering, Yangtze Normal University, 408100, PR China
– sequence: 5
  givenname: Tao
  surname: Shi
  fullname: Shi, Tao
  organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
– sequence: 6
  givenname: Zhongmei
  surname: Li
  fullname: Li, Zhongmei
  organization: State Key Laboratory of Industrial Control Technology, East China University of Science and Technology, Ministry of Education, Shanghai, 200237, PR China
– sequence: 7
  givenname: Wenli
  surname: Du
  fullname: Du, Wenli
  organization: State Key Laboratory of Industrial Control Technology, East China University of Science and Technology, Ministry of Education, Shanghai, 200237, PR China
– sequence: 8
  givenname: Rongsheng
  surname: Lin
  fullname: Lin, Rongsheng
  organization: Jurong Energy (Xinjiang) Co., Ltd. Urumqi, Xinjiang, 841603, PR China
– sequence: 9
  givenname: Zong Yang
  surname: Kong
  fullname: Kong, Zong Yang
  email: savierk@sunway.edu.my
  organization: School of Engineering, Faculty of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
– sequence: 10
  givenname: Weifeng
  surname: Shen
  fullname: Shen, Weifeng
  email: shenweifeng@cqu.edu.cn
  organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
BookMark eNp9kMtOwzAQRb0oEm3hD1jkBxJsp7ZTFkioAoqEhIRgbfkxDq7SONhpeXw9CWHNYnQXo3N1dRZo1oYWELoguCCY8MtdkaDrDrGgmLKClGzNyxmak7Iqc1ZxfooWKe0wJoJUdI7qZzj65Hvf1pkJ-66Bz0x9Q-hj6LzJrE-9bxrV-9BmFpKv26tsGz4yB2B_gTDCw9Oo4d5UW0M2DFBxQhK8H6A1kM7QiVNNgvO_XKLXu9uXzTZ_fLp_2Nw85oYI2udc4DVlWHOuiXBaO2PVyhhWOU2ZEII5qhXTK2VLvdbaAhemqpjhBISjlS6XaDX1mhhSiuBkF_1exS9JsBwFyZ2cBMlRkJwEDdj1hMGw7eghymT8ONz6CKaXNvj_C34AxHt4vA
Cites_doi 10.1016/j.seppur.2024.131081
10.1021/acs.iecr.5b03666
10.1016/j.cjche.2016.06.013
10.1016/j.compchemeng.2025.109144
10.1021/acs.iecr.8b00883
10.3390/pr9122150
10.1016/j.cherd.2022.09.056
10.1016/j.cherd.2022.08.022
10.1002/aic.16526
10.1081/SPM-120026627
10.3390/pr8050508
10.1016/j.cep.2016.10.011
10.1016/j.compchemeng.2015.02.016
10.1016/j.compchemeng.2024.108618
10.1016/j.ces.2022.118088
10.1016/j.coche.2015.08.006
10.1016/j.cjche.2018.08.018
10.1021/acs.iecr.2c02889
10.1016/j.ces.2017.11.035
10.1134/S0040579516010140
10.1016/j.seppur.2024.128280
10.1081/SPM-200054984
10.1016/j.ces.2019.115373
10.1016/j.seppur.2015.10.020
10.1080/15422119.2014.963607
10.1016/j.seppur.2022.121159
10.1016/j.seppur.2023.123163
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.seppur.2025.135963
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_seppur_2025_135963
S1383586625045605
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABNUV
ABXRA
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
~G-
~HD
9DU
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FGOYB
HZ~
R2-
ID FETCH-LOGICAL-c172t-6709250b66b17fbbfcda4cc58fb257775f2ba5b4ad3b9bbde67c885c61e7f28b3
ISSN 1383-5866
IngestDate Thu Nov 27 00:39:01 EST 2025
Sat Nov 29 17:03:23 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Distillation
Process optimization
Separation feasibility
Feed composition
Separations
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c172t-6709250b66b17fbbfcda4cc58fb257775f2ba5b4ad3b9bbde67c885c61e7f28b3
ParticipantIDs crossref_primary_10_1016_j_seppur_2025_135963
elsevier_sciencedirect_doi_10_1016_j_seppur_2025_135963
PublicationCentury 2000
PublicationDate 2026-02-26
PublicationDateYYYYMMDD 2026-02-26
PublicationDate_xml – month: 02
  year: 2026
  text: 2026-02-26
  day: 26
PublicationDecade 2020
PublicationTitle Separation and purification technology
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Liang, Bu, Liu, Zhang, Zhu (bb0065) 2015; 54
Luyben (bb0120) 2015; 156
Mahdi, Ahmad, Nasef, Ripin (bb0020) 2015; 44
Luyben (bb0100) 2025; 360
Rangaiah, Sharma, Sreepathi (bb0140) 2015; 10
da Cunha, Rangaiah, Hidajat (bb0145) 2018; 57
Yang, Kong, Sunarso (bb0055) 2023; 451
You, Gu, Gerbaud, Peng, Liu (bb0130) 2018; 177
Cao, Li, Wang, Zhao, Li, Zhu (bb0060) 2016; 110
zhu X, Zhao X, Zhang Z, Ma Z, Gao J. (bb0080) 2021
Cui, Li, Luyben, Kiss (bb0095) 2025; 199
Sun, Peng, Kong, Ong, Qin, Yang (bb0110) 2025; 352
Shi, Chun, Yang, Su, Jin, Ren (bb0150) 2020; 215
Rangaiah, Feng, Hoadley (bb0125) 2020; 8
Sun, Lü, Yang, Wei, Shen (bb0010) 2019; 27
Kong, Lee, Sunarso (bb0030) 2022; 284
Wang, Zhuang, Dong, Liu, Zhang, Du (bb0045) 2022; 263
Yu, Chien (bb0085) 2023; 310
Yang, Sun, Kong, Zhu, Sunarso, Shen (bb0135) 2024; 183
Shen, Benyounes, Song (bb0025) 2016; 50
Wang, Zhuang, Song, Liu, Dong, Zhang (bb0050) 2022; 186
Wu, Hua, Kuo, Chien (bb0105) 2023; 62
Zhu, Wang, Ma, Wang, Wang (bb0070) 2015; 76
Wu, Chien (bb0090) 2022; 294
Kong, Sánchez-Ramírez, Yang, Shen, Segovia-Hernández, Sunarso (bb0040) 2022; 188
Li, Lei, Ding, Li, Chen (bb0005) 2005; 34
Zhang, Zhang, Li, Liu, Gao (bb0075) 2016; 24
Lei, Li, Chen (bb0015) 2003; 32
Alcántara Avila, Kong, Lee, Sunarso (bb0035) 2021; 9
Yang, Shen, Wei, Dong, Li, Gerbaud (bb0115) 2019; 65
Lei (10.1016/j.seppur.2025.135963_bb0015) 2003; 32
Luyben (10.1016/j.seppur.2025.135963_bb0120) 2015; 156
Rangaiah (10.1016/j.seppur.2025.135963_bb0140) 2015; 10
Kong (10.1016/j.seppur.2025.135963_bb0040) 2022; 188
Mahdi (10.1016/j.seppur.2025.135963_bb0020) 2015; 44
Zhang (10.1016/j.seppur.2025.135963_bb0075) 2016; 24
Luyben (10.1016/j.seppur.2025.135963_bb0100) 2025; 360
Shi (10.1016/j.seppur.2025.135963_bb0150) 2020; 215
Wang (10.1016/j.seppur.2025.135963_bb0045) 2022; 263
Cui (10.1016/j.seppur.2025.135963_bb0095) 2025; 199
Alcántara Avila (10.1016/j.seppur.2025.135963_bb0035) 2021; 9
Yang (10.1016/j.seppur.2025.135963_bb0055) 2023; 451
Yu (10.1016/j.seppur.2025.135963_bb0085) 2023; 310
Kong (10.1016/j.seppur.2025.135963_bb0030) 2022; 284
You (10.1016/j.seppur.2025.135963_bb0130) 2018; 177
Wang (10.1016/j.seppur.2025.135963_bb0050) 2022; 186
Wu (10.1016/j.seppur.2025.135963_bb0090) 2022; 294
Sun (10.1016/j.seppur.2025.135963_bb0110) 2025; 352
Li (10.1016/j.seppur.2025.135963_bb0005) 2005; 34
Yang (10.1016/j.seppur.2025.135963_bb0115) 2019; 65
Shen (10.1016/j.seppur.2025.135963_bb0025) 2016; 50
Zhu (10.1016/j.seppur.2025.135963_bb0070) 2015; 76
Wu (10.1016/j.seppur.2025.135963_bb0105) 2023; 62
Wang (10.1016/j.seppur.2025.135963_bb0065) 2015; 54
zhu X, Zhao X, Zhang Z, Ma Z, Gao J. (10.1016/j.seppur.2025.135963_bb0080) 2021
Rangaiah (10.1016/j.seppur.2025.135963_bb0125) 2020; 8
da Cunha (10.1016/j.seppur.2025.135963_bb0145) 2018; 57
Sun (10.1016/j.seppur.2025.135963_bb0010) 2019; 27
Yang (10.1016/j.seppur.2025.135963_bb0135) 2024; 183
Cao (10.1016/j.seppur.2025.135963_bb0060) 2016; 110
References_xml – volume: 54
  start-page: 12908
  year: 2015
  end-page: 12919
  ident: bb0065
  article-title: Effect of Solvent Flow Rates on Controllability of Extractive Distillation for Separating Binary Azeotropic Mixture
  publication-title: Ind Eng Chem Res
– volume: 44
  start-page: 308
  year: 2015
  end-page: 330
  ident: bb0020
  article-title: State-of-the-Art Technologies for Separation of Azeotropic Mixtures
  publication-title: Separation & Purification Reviews
– volume: 10
  start-page: 49
  year: 2015
  end-page: 62
  ident: bb0140
  article-title: Multi-objective optimization for the design and operation of energy efficient chemical processes and power generation
  publication-title: Curr Opin Chem Eng
– start-page: 167
  year: 2021
  ident: bb0080
  article-title: Optimal design and control of an energy-efficient triple-side-stream quaternary extractive distillation process
  publication-title: Chemical Engineering and Processing - Process Intensification
– volume: 8
  start-page: 508
  year: 2020
  ident: bb0125
  article-title: Multi-Objective Optimization Applications in Chemical Process Engineering: Tutorial and Review
  publication-title: Processes
– volume: 263
  year: 2022
  ident: bb0045
  article-title: Conceptual design of sustainable extractive distillation processes combining preconcentration and extractive distillation functions for separating ternary multi-azeotropic mixture
  publication-title: Chem Eng Sci
– volume: 188
  start-page: 378
  year: 2022
  end-page: 392
  ident: bb0040
  article-title: Process intensification from conventional to advanced distillations: Past, present, and future
  publication-title: Chemical Engineering Research and Design
– volume: 65
  start-page: 1281
  year: 2019
  end-page: 1293
  ident: bb0115
  article-title: Design and control of pressure-swing distillation for separating ternary systems with three binary minimum azeotropes
  publication-title: AIChE Journal
– volume: 215
  year: 2020
  ident: bb0150
  article-title: Optimization and control of energy saving side-stream extractive distillation with heat integration for separating ethyl acetate-ethanol azeotrope
  publication-title: Chem Eng Sci
– volume: 294
  year: 2022
  ident: bb0090
  article-title: Novel control strategy of intensified hybrid reactive-extractive distillation process for the separation of water-containing ternary mixtures
  publication-title: Sep Purif Technol
– volume: 32
  start-page: 121
  year: 2003
  end-page: 213
  ident: bb0015
  article-title: Extractive Distillation: A Review
  publication-title: Separation & Purification Reviews
– volume: 186
  start-page: 497
  year: 2022
  end-page: 510
  ident: bb0050
  article-title: Design and optimization of organic Rankine cycle using different working fluids for recovering waste heat in reaction-separation process of cumene synthesis
  publication-title: Chemical Engineering Research and Design
– volume: 9
  start-page: 2150
  year: 2021
  ident: bb0035
  article-title: Advancements in optimization and control techniques for intensifying processes
  publication-title: Processes
– volume: 110
  start-page: 160
  year: 2016
  end-page: 171
  ident: bb0060
  article-title: Effect of feed temperature on economics and controllability of pressure-swing distillation for separating binary azeotrope
  publication-title: Chemical Engineering & Processing: Process Intensification
– volume: 451
  year: 2023
  ident: bb0055
  article-title: Design and optimisation of novel hybrid side-stream reactive-extractive distillation for recovery of isopropyl alcohol and ethyl acetate from wastewater
  publication-title: Chemical Engineering Journal
– volume: 27
  start-page: 1247
  year: 2019
  end-page: 1256
  ident: bb0010
  article-title: Extractive distillation: Advances in conceptual design, solvent selection, and separation strategies
  publication-title: Chin J Chem Eng
– volume: 352
  year: 2025
  ident: bb0110
  article-title: A different strategy to reduce energy consumption for designing heterogeneous decanter-assisted advanced pressure-swing distillation process
  publication-title: Sep Purif Technol
– volume: 34
  start-page: 87
  year: 2005
  end-page: 129
  ident: bb0005
  article-title: Azeotropic Distillation: A Review of Mathematical Models
  publication-title: Separation & Purification Reviews
– volume: 24
  start-page: 1584
  year: 2016
  end-page: 1599
  ident: bb0075
  article-title: Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation
  publication-title: Chin J Chem Eng
– volume: 156
  start-page: 336
  year: 2015
  end-page: 347
  ident: bb0120
  article-title: Improved design of an extractive distillation system with an intermediate-boiling solvent
  publication-title: Sep Purif Technol
– volume: 76
  start-page: 137
  year: 2015
  end-page: 149
  ident: bb0070
  article-title: Separating an azeotropic mixture of toluene and ethanol via heat integration pressure swing distillation
  publication-title: Comput Chem Eng
– volume: 177
  start-page: 354
  year: 2018
  end-page: 368
  ident: bb0130
  article-title: Optimization of pre-concentration, entrainer recycle and pressure selection for the extractive distillation of acetonitrile-water with ethylene glycol
  publication-title: Chem Eng Sci
– volume: 199
  year: 2025
  ident: bb0095
  article-title: Dynamics and control of discretely heat integrated distillation columns
  publication-title: Comput Chem Eng
– volume: 360
  year: 2025
  ident: bb0100
  article-title: Control of a three-column distillation process for separating acetonitrile, chloroform and ethanol
  publication-title: Sep Purif Technol
– volume: 62
  start-page: 2080
  year: 2023
  end-page: 2089
  ident: bb0105
  article-title: Novel Process Development of Hybrid Reactive–Extractive Distillation System for the Separation of a Cyclohexane/Isopropanol/Water Mixture with Different Feed Compositions
  publication-title: Ind Eng Chem Res
– volume: 310
  year: 2023
  ident: bb0085
  article-title: Novel temperature-control strategy for single column side-stream extractive distillation process with intermediate-boiling entrainer
  publication-title: Sep Purif Technol
– volume: 183
  year: 2024
  ident: bb0135
  article-title: Energy-efficient heterogeneous triple-column azeotropic distillation process for recovery of ethyl acetate and methanol from wastewater
  publication-title: Comput Chem Eng
– volume: 284
  year: 2022
  ident: bb0030
  article-title: The evolution of process design and control for ternary azeotropic separation: Recent advances in distillation and future directions
  publication-title: Sep Purif Technol
– volume: 57
  start-page: 9554
  year: 2018
  end-page: 9570
  ident: bb0145
  article-title: Design, Optimization, and Retrofit of the Formic Acid Process I: Base Case Design and Dividing-Wall Column Retrofit
  publication-title: Ind Eng Chem Res
– volume: 50
  start-page: 28
  year: 2016
  end-page: 40
  ident: bb0025
  article-title: A review of ternary azeotropic mixtures advanced separation strategies
  publication-title: Theoretical Foundations of Chemical Engineering
– volume: 360
  year: 2025
  ident: 10.1016/j.seppur.2025.135963_bb0100
  article-title: Control of a three-column distillation process for separating acetonitrile, chloroform and ethanol
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2024.131081
– volume: 54
  start-page: 12908
  year: 2015
  ident: 10.1016/j.seppur.2025.135963_bb0065
  article-title: Effect of Solvent Flow Rates on Controllability of Extractive Distillation for Separating Binary Azeotropic Mixture
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.5b03666
– volume: 24
  start-page: 1584
  year: 2016
  ident: 10.1016/j.seppur.2025.135963_bb0075
  article-title: Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation
  publication-title: Chin J Chem Eng
  doi: 10.1016/j.cjche.2016.06.013
– start-page: 167
  year: 2021
  ident: 10.1016/j.seppur.2025.135963_bb0080
  article-title: Optimal design and control of an energy-efficient triple-side-stream quaternary extractive distillation process
  publication-title: Chemical Engineering and Processing - Process Intensification
– volume: 199
  year: 2025
  ident: 10.1016/j.seppur.2025.135963_bb0095
  article-title: Dynamics and control of discretely heat integrated distillation columns
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2025.109144
– volume: 57
  start-page: 9554
  year: 2018
  ident: 10.1016/j.seppur.2025.135963_bb0145
  article-title: Design, Optimization, and Retrofit of the Formic Acid Process I: Base Case Design and Dividing-Wall Column Retrofit
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.8b00883
– volume: 9
  start-page: 2150
  year: 2021
  ident: 10.1016/j.seppur.2025.135963_bb0035
  article-title: Advancements in optimization and control techniques for intensifying processes
  publication-title: Processes
  doi: 10.3390/pr9122150
– volume: 188
  start-page: 378
  year: 2022
  ident: 10.1016/j.seppur.2025.135963_bb0040
  article-title: Process intensification from conventional to advanced distillations: Past, present, and future
  publication-title: Chemical Engineering Research and Design
  doi: 10.1016/j.cherd.2022.09.056
– volume: 186
  start-page: 497
  year: 2022
  ident: 10.1016/j.seppur.2025.135963_bb0050
  article-title: Design and optimization of organic Rankine cycle using different working fluids for recovering waste heat in reaction-separation process of cumene synthesis
  publication-title: Chemical Engineering Research and Design
  doi: 10.1016/j.cherd.2022.08.022
– volume: 65
  start-page: 1281
  year: 2019
  ident: 10.1016/j.seppur.2025.135963_bb0115
  article-title: Design and control of pressure-swing distillation for separating ternary systems with three binary minimum azeotropes
  publication-title: AIChE Journal
  doi: 10.1002/aic.16526
– volume: 32
  start-page: 121
  year: 2003
  ident: 10.1016/j.seppur.2025.135963_bb0015
  article-title: Extractive Distillation: A Review
  publication-title: Separation & Purification Reviews
  doi: 10.1081/SPM-120026627
– volume: 8
  start-page: 508
  year: 2020
  ident: 10.1016/j.seppur.2025.135963_bb0125
  article-title: Multi-Objective Optimization Applications in Chemical Process Engineering: Tutorial and Review
  publication-title: Processes
  doi: 10.3390/pr8050508
– volume: 110
  start-page: 160
  year: 2016
  ident: 10.1016/j.seppur.2025.135963_bb0060
  article-title: Effect of feed temperature on economics and controllability of pressure-swing distillation for separating binary azeotrope
  publication-title: Chemical Engineering & Processing: Process Intensification
  doi: 10.1016/j.cep.2016.10.011
– volume: 76
  start-page: 137
  year: 2015
  ident: 10.1016/j.seppur.2025.135963_bb0070
  article-title: Separating an azeotropic mixture of toluene and ethanol via heat integration pressure swing distillation
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2015.02.016
– volume: 183
  year: 2024
  ident: 10.1016/j.seppur.2025.135963_bb0135
  article-title: Energy-efficient heterogeneous triple-column azeotropic distillation process for recovery of ethyl acetate and methanol from wastewater
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2024.108618
– volume: 263
  year: 2022
  ident: 10.1016/j.seppur.2025.135963_bb0045
  article-title: Conceptual design of sustainable extractive distillation processes combining preconcentration and extractive distillation functions for separating ternary multi-azeotropic mixture
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2022.118088
– volume: 10
  start-page: 49
  year: 2015
  ident: 10.1016/j.seppur.2025.135963_bb0140
  article-title: Multi-objective optimization for the design and operation of energy efficient chemical processes and power generation
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2015.08.006
– volume: 284
  year: 2022
  ident: 10.1016/j.seppur.2025.135963_bb0030
  article-title: The evolution of process design and control for ternary azeotropic separation: Recent advances in distillation and future directions
  publication-title: Sep Purif Technol
– volume: 27
  start-page: 1247
  year: 2019
  ident: 10.1016/j.seppur.2025.135963_bb0010
  article-title: Extractive distillation: Advances in conceptual design, solvent selection, and separation strategies
  publication-title: Chin J Chem Eng
  doi: 10.1016/j.cjche.2018.08.018
– volume: 62
  start-page: 2080
  year: 2023
  ident: 10.1016/j.seppur.2025.135963_bb0105
  article-title: Novel Process Development of Hybrid Reactive–Extractive Distillation System for the Separation of a Cyclohexane/Isopropanol/Water Mixture with Different Feed Compositions
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.2c02889
– volume: 177
  start-page: 354
  year: 2018
  ident: 10.1016/j.seppur.2025.135963_bb0130
  article-title: Optimization of pre-concentration, entrainer recycle and pressure selection for the extractive distillation of acetonitrile-water with ethylene glycol
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2017.11.035
– volume: 50
  start-page: 28
  year: 2016
  ident: 10.1016/j.seppur.2025.135963_bb0025
  article-title: A review of ternary azeotropic mixtures advanced separation strategies
  publication-title: Theoretical Foundations of Chemical Engineering
  doi: 10.1134/S0040579516010140
– volume: 352
  year: 2025
  ident: 10.1016/j.seppur.2025.135963_bb0110
  article-title: A different strategy to reduce energy consumption for designing heterogeneous decanter-assisted advanced pressure-swing distillation process
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2024.128280
– volume: 34
  start-page: 87
  year: 2005
  ident: 10.1016/j.seppur.2025.135963_bb0005
  article-title: Azeotropic Distillation: A Review of Mathematical Models
  publication-title: Separation & Purification Reviews
  doi: 10.1081/SPM-200054984
– volume: 215
  year: 2020
  ident: 10.1016/j.seppur.2025.135963_bb0150
  article-title: Optimization and control of energy saving side-stream extractive distillation with heat integration for separating ethyl acetate-ethanol azeotrope
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2019.115373
– volume: 156
  start-page: 336
  year: 2015
  ident: 10.1016/j.seppur.2025.135963_bb0120
  article-title: Improved design of an extractive distillation system with an intermediate-boiling solvent
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2015.10.020
– volume: 44
  start-page: 308
  year: 2015
  ident: 10.1016/j.seppur.2025.135963_bb0020
  article-title: State-of-the-Art Technologies for Separation of Azeotropic Mixtures
  publication-title: Separation & Purification Reviews
  doi: 10.1080/15422119.2014.963607
– volume: 294
  year: 2022
  ident: 10.1016/j.seppur.2025.135963_bb0090
  article-title: Novel control strategy of intensified hybrid reactive-extractive distillation process for the separation of water-containing ternary mixtures
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2022.121159
– volume: 310
  year: 2023
  ident: 10.1016/j.seppur.2025.135963_bb0085
  article-title: Novel temperature-control strategy for single column side-stream extractive distillation process with intermediate-boiling entrainer
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2023.123163
– volume: 451
  year: 2023
  ident: 10.1016/j.seppur.2025.135963_bb0055
  article-title: Design and optimisation of novel hybrid side-stream reactive-extractive distillation for recovery of isopropyl alcohol and ethyl acetate from wastewater
  publication-title: Chemical Engineering Journal
SSID ssj0017182
Score 2.4816911
Snippet The design of complex azeotropic distillation system are typically based on a fixed nominal feed composition, i.e., assuming the same process setup remains...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 135963
SubjectTerms Distillation
Feed composition
Process optimization
Separation feasibility
Separations
Title Revisiting complex azeotropic distillation design: How feed composition can change separation sequences
URI https://dx.doi.org/10.1016/j.seppur.2025.135963
Volume 382
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1383-5866
  databaseCode: AIEXJ
  dateStart: 19970519
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017182
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELaWx4EeqraAoC_5wA0FsU4cO9xWFVVbVagCKm25RLbjwCKURCGLVvyH_ueOH3nQrVA5cIlW3sTJZr4dz4y_mUFoT8uIHhIFbkksowAQIoMkSrJgLLhZ4ERMclsy_zs7OeHTafJjNPrd5sLc3bCi4ItFUj2rqGEMhG1SZ58g7m5SGIDPIHQ4gtjh-F-CP7X54o1Ppq1u9GJf3OuyqctqpsyGTGMaDVmxZ5a-YYICprNcDguZvcTzuAwhzCcG799qVyMcRjvy9dCuPeu_t5UH5rWhILmBZil6_8sHqS-utO2Y1JGAROnw00O2PXVS9ttXLmR7Navns2HQglies8uM93oWHOOActdwpVXEoWtD5FXpOKSJ031LWt4FHExSfgW_B5x8Qg_60x8W1f5rsesoiC277Tp1s6RmltTNsoLWCKMJKMm1ydfj6bduWwoWcrt93j59m4tpCYPLT_NvW2dgv5y_Qi-944EnDjCv0UgXb9CLQTnKTXTZQwd76OAeOngIHeygc4QBONgABw-AgwE42AEH98DBHXC20M_Px-efvgS-EUegwL5tAlPjD0xlCf_nMculzFUmIqUozyVofMZoTqSgMhJZKBMpMx0zxTlV8ViznHAZbqPVoiz0DsKhyCiV4CtFOYnAdRCHmSZhzAUjPFMk3kVB-8rSytVbSR8T1S5i7XtNvc3obMEUwPLolW-feKd3aKNH8nu02tRz_QGtq7tmdlt_9Ej5A_kylag
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+complex+azeotropic+distillation+design%3A+How+feed+composition+can+change+separation+sequences&rft.jtitle=Separation+and+purification+technology&rft.au=Yang%2C+Zhenning&rft.au=Gao%2C+Tian&rft.au=Yang%2C+Ao&rft.au=Sun%2C+Shirui&rft.date=2026-02-26&rft.issn=1383-5866&rft.volume=382&rft.spage=135963&rft_id=info:doi/10.1016%2Fj.seppur.2025.135963&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seppur_2025_135963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon