Revisiting complex azeotropic distillation design: How feed composition can change separation sequences
The design of complex azeotropic distillation system are typically based on a fixed nominal feed composition, i.e., assuming the same process setup remains valid under expected disturbances. This sequential “control after design” strategy often overlooks a critical question: can variations in feed c...
Gespeichert in:
| Veröffentlicht in: | Separation and purification technology Jg. 382; S. 135963 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
26.02.2026
|
| Schlagworte: | |
| ISSN: | 1383-5866 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The design of complex azeotropic distillation system are typically based on a fixed nominal feed composition, i.e., assuming the same process setup remains valid under expected disturbances. This sequential “control after design” strategy often overlooks a critical question: can variations in feed composition fundamentally alter the optimal separation sequence? In this work, we investigates the influence of feed composition on the optimal design and performance of a triple-column pressure-swing distillation with decanter (TCPSD-D) for multi-azeotropes system. Three configurations were developed under two different feed compositions to explore how product sequence, pressure requirements, and utility usage shift with changing feed conditions. While two configurations based on the same feed required pressure manipulation to alter the separation order, a third configuration using a different feed achieved the same sequence without elevated pressure. Optimization results revealed that although all columns in the third configuration operated with low-pressure steam, the use of chilled water in a vacuum condenser led to the highest overall cost. In contrast, the first configuration demonstrated the best cost–energy balance. These findings highlight the critical role of feed composition in early-stage process design, where it can fundamentally influence separation feasibility, utility strategy, and economic outcomes. |
|---|---|
| AbstractList | The design of complex azeotropic distillation system are typically based on a fixed nominal feed composition, i.e., assuming the same process setup remains valid under expected disturbances. This sequential “control after design” strategy often overlooks a critical question: can variations in feed composition fundamentally alter the optimal separation sequence? In this work, we investigates the influence of feed composition on the optimal design and performance of a triple-column pressure-swing distillation with decanter (TCPSD-D) for multi-azeotropes system. Three configurations were developed under two different feed compositions to explore how product sequence, pressure requirements, and utility usage shift with changing feed conditions. While two configurations based on the same feed required pressure manipulation to alter the separation order, a third configuration using a different feed achieved the same sequence without elevated pressure. Optimization results revealed that although all columns in the third configuration operated with low-pressure steam, the use of chilled water in a vacuum condenser led to the highest overall cost. In contrast, the first configuration demonstrated the best cost–energy balance. These findings highlight the critical role of feed composition in early-stage process design, where it can fundamentally influence separation feasibility, utility strategy, and economic outcomes. |
| ArticleNumber | 135963 |
| Author | Yang, Zhenning Sun, Shirui Du, Wenli Lin, Rongsheng Kong, Zong Yang Shen, Weifeng Shi, Tao Yang, Ao Li, Zhongmei Gao, Tian |
| Author_xml | – sequence: 1 givenname: Zhenning surname: Yang fullname: Yang, Zhenning organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China – sequence: 2 givenname: Tian surname: Gao fullname: Gao, Tian organization: Chongqing Technology Transfer Research Institute Co., Ltd, Chongqing 401120, PR China – sequence: 3 givenname: Ao surname: Yang fullname: Yang, Ao organization: College of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing, PR China – sequence: 4 givenname: Shirui surname: Sun fullname: Sun, Shirui organization: School of Chemistry and Chemical Engineering, Yangtze Normal University, 408100, PR China – sequence: 5 givenname: Tao surname: Shi fullname: Shi, Tao organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China – sequence: 6 givenname: Zhongmei surname: Li fullname: Li, Zhongmei organization: State Key Laboratory of Industrial Control Technology, East China University of Science and Technology, Ministry of Education, Shanghai, 200237, PR China – sequence: 7 givenname: Wenli surname: Du fullname: Du, Wenli organization: State Key Laboratory of Industrial Control Technology, East China University of Science and Technology, Ministry of Education, Shanghai, 200237, PR China – sequence: 8 givenname: Rongsheng surname: Lin fullname: Lin, Rongsheng organization: Jurong Energy (Xinjiang) Co., Ltd. Urumqi, Xinjiang, 841603, PR China – sequence: 9 givenname: Zong Yang surname: Kong fullname: Kong, Zong Yang email: savierk@sunway.edu.my organization: School of Engineering, Faculty of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia – sequence: 10 givenname: Weifeng surname: Shen fullname: Shen, Weifeng email: shenweifeng@cqu.edu.cn organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China |
| BookMark | eNp9kMtOwzAQRb0oEm3hD1jkBxJsp7ZTFkioAoqEhIRgbfkxDq7SONhpeXw9CWHNYnQXo3N1dRZo1oYWELoguCCY8MtdkaDrDrGgmLKClGzNyxmak7Iqc1ZxfooWKe0wJoJUdI7qZzj65Hvf1pkJ-66Bz0x9Q-hj6LzJrE-9bxrV-9BmFpKv26tsGz4yB2B_gTDCw9Oo4d5UW0M2DFBxQhK8H6A1kM7QiVNNgvO_XKLXu9uXzTZ_fLp_2Nw85oYI2udc4DVlWHOuiXBaO2PVyhhWOU2ZEII5qhXTK2VLvdbaAhemqpjhBISjlS6XaDX1mhhSiuBkF_1exS9JsBwFyZ2cBMlRkJwEDdj1hMGw7eghymT8ONz6CKaXNvj_C34AxHt4vA |
| Cites_doi | 10.1016/j.seppur.2024.131081 10.1021/acs.iecr.5b03666 10.1016/j.cjche.2016.06.013 10.1016/j.compchemeng.2025.109144 10.1021/acs.iecr.8b00883 10.3390/pr9122150 10.1016/j.cherd.2022.09.056 10.1016/j.cherd.2022.08.022 10.1002/aic.16526 10.1081/SPM-120026627 10.3390/pr8050508 10.1016/j.cep.2016.10.011 10.1016/j.compchemeng.2015.02.016 10.1016/j.compchemeng.2024.108618 10.1016/j.ces.2022.118088 10.1016/j.coche.2015.08.006 10.1016/j.cjche.2018.08.018 10.1021/acs.iecr.2c02889 10.1016/j.ces.2017.11.035 10.1134/S0040579516010140 10.1016/j.seppur.2024.128280 10.1081/SPM-200054984 10.1016/j.ces.2019.115373 10.1016/j.seppur.2015.10.020 10.1080/15422119.2014.963607 10.1016/j.seppur.2022.121159 10.1016/j.seppur.2023.123163 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.seppur.2025.135963 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_seppur_2025_135963 S1383586625045605 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABNUV ABXRA ACDAQ ACGFS ACLOT ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSM SSZ T5K ~G- ~HD 9DU AAQXK AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FGOYB HZ~ R2- |
| ID | FETCH-LOGICAL-c172t-6709250b66b17fbbfcda4cc58fb257775f2ba5b4ad3b9bbde67c885c61e7f28b3 |
| ISSN | 1383-5866 |
| IngestDate | Thu Nov 27 00:39:01 EST 2025 Sat Nov 29 17:03:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Distillation Process optimization Separation feasibility Feed composition Separations |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c172t-6709250b66b17fbbfcda4cc58fb257775f2ba5b4ad3b9bbde67c885c61e7f28b3 |
| ParticipantIDs | crossref_primary_10_1016_j_seppur_2025_135963 elsevier_sciencedirect_doi_10_1016_j_seppur_2025_135963 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-02-26 |
| PublicationDateYYYYMMDD | 2026-02-26 |
| PublicationDate_xml | – month: 02 year: 2026 text: 2026-02-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | Separation and purification technology |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Liang, Bu, Liu, Zhang, Zhu (bb0065) 2015; 54 Luyben (bb0120) 2015; 156 Mahdi, Ahmad, Nasef, Ripin (bb0020) 2015; 44 Luyben (bb0100) 2025; 360 Rangaiah, Sharma, Sreepathi (bb0140) 2015; 10 da Cunha, Rangaiah, Hidajat (bb0145) 2018; 57 Yang, Kong, Sunarso (bb0055) 2023; 451 You, Gu, Gerbaud, Peng, Liu (bb0130) 2018; 177 Cao, Li, Wang, Zhao, Li, Zhu (bb0060) 2016; 110 zhu X, Zhao X, Zhang Z, Ma Z, Gao J. (bb0080) 2021 Cui, Li, Luyben, Kiss (bb0095) 2025; 199 Sun, Peng, Kong, Ong, Qin, Yang (bb0110) 2025; 352 Shi, Chun, Yang, Su, Jin, Ren (bb0150) 2020; 215 Rangaiah, Feng, Hoadley (bb0125) 2020; 8 Sun, Lü, Yang, Wei, Shen (bb0010) 2019; 27 Kong, Lee, Sunarso (bb0030) 2022; 284 Wang, Zhuang, Dong, Liu, Zhang, Du (bb0045) 2022; 263 Yu, Chien (bb0085) 2023; 310 Yang, Sun, Kong, Zhu, Sunarso, Shen (bb0135) 2024; 183 Shen, Benyounes, Song (bb0025) 2016; 50 Wang, Zhuang, Song, Liu, Dong, Zhang (bb0050) 2022; 186 Wu, Hua, Kuo, Chien (bb0105) 2023; 62 Zhu, Wang, Ma, Wang, Wang (bb0070) 2015; 76 Wu, Chien (bb0090) 2022; 294 Kong, Sánchez-Ramírez, Yang, Shen, Segovia-Hernández, Sunarso (bb0040) 2022; 188 Li, Lei, Ding, Li, Chen (bb0005) 2005; 34 Zhang, Zhang, Li, Liu, Gao (bb0075) 2016; 24 Lei, Li, Chen (bb0015) 2003; 32 Alcántara Avila, Kong, Lee, Sunarso (bb0035) 2021; 9 Yang, Shen, Wei, Dong, Li, Gerbaud (bb0115) 2019; 65 Lei (10.1016/j.seppur.2025.135963_bb0015) 2003; 32 Luyben (10.1016/j.seppur.2025.135963_bb0120) 2015; 156 Rangaiah (10.1016/j.seppur.2025.135963_bb0140) 2015; 10 Kong (10.1016/j.seppur.2025.135963_bb0040) 2022; 188 Mahdi (10.1016/j.seppur.2025.135963_bb0020) 2015; 44 Zhang (10.1016/j.seppur.2025.135963_bb0075) 2016; 24 Luyben (10.1016/j.seppur.2025.135963_bb0100) 2025; 360 Shi (10.1016/j.seppur.2025.135963_bb0150) 2020; 215 Wang (10.1016/j.seppur.2025.135963_bb0045) 2022; 263 Cui (10.1016/j.seppur.2025.135963_bb0095) 2025; 199 Alcántara Avila (10.1016/j.seppur.2025.135963_bb0035) 2021; 9 Yang (10.1016/j.seppur.2025.135963_bb0055) 2023; 451 Yu (10.1016/j.seppur.2025.135963_bb0085) 2023; 310 Kong (10.1016/j.seppur.2025.135963_bb0030) 2022; 284 You (10.1016/j.seppur.2025.135963_bb0130) 2018; 177 Wang (10.1016/j.seppur.2025.135963_bb0050) 2022; 186 Wu (10.1016/j.seppur.2025.135963_bb0090) 2022; 294 Sun (10.1016/j.seppur.2025.135963_bb0110) 2025; 352 Li (10.1016/j.seppur.2025.135963_bb0005) 2005; 34 Yang (10.1016/j.seppur.2025.135963_bb0115) 2019; 65 Shen (10.1016/j.seppur.2025.135963_bb0025) 2016; 50 Zhu (10.1016/j.seppur.2025.135963_bb0070) 2015; 76 Wu (10.1016/j.seppur.2025.135963_bb0105) 2023; 62 Wang (10.1016/j.seppur.2025.135963_bb0065) 2015; 54 zhu X, Zhao X, Zhang Z, Ma Z, Gao J. (10.1016/j.seppur.2025.135963_bb0080) 2021 Rangaiah (10.1016/j.seppur.2025.135963_bb0125) 2020; 8 da Cunha (10.1016/j.seppur.2025.135963_bb0145) 2018; 57 Sun (10.1016/j.seppur.2025.135963_bb0010) 2019; 27 Yang (10.1016/j.seppur.2025.135963_bb0135) 2024; 183 Cao (10.1016/j.seppur.2025.135963_bb0060) 2016; 110 |
| References_xml | – volume: 54 start-page: 12908 year: 2015 end-page: 12919 ident: bb0065 article-title: Effect of Solvent Flow Rates on Controllability of Extractive Distillation for Separating Binary Azeotropic Mixture publication-title: Ind Eng Chem Res – volume: 44 start-page: 308 year: 2015 end-page: 330 ident: bb0020 article-title: State-of-the-Art Technologies for Separation of Azeotropic Mixtures publication-title: Separation & Purification Reviews – volume: 10 start-page: 49 year: 2015 end-page: 62 ident: bb0140 article-title: Multi-objective optimization for the design and operation of energy efficient chemical processes and power generation publication-title: Curr Opin Chem Eng – start-page: 167 year: 2021 ident: bb0080 article-title: Optimal design and control of an energy-efficient triple-side-stream quaternary extractive distillation process publication-title: Chemical Engineering and Processing - Process Intensification – volume: 8 start-page: 508 year: 2020 ident: bb0125 article-title: Multi-Objective Optimization Applications in Chemical Process Engineering: Tutorial and Review publication-title: Processes – volume: 263 year: 2022 ident: bb0045 article-title: Conceptual design of sustainable extractive distillation processes combining preconcentration and extractive distillation functions for separating ternary multi-azeotropic mixture publication-title: Chem Eng Sci – volume: 188 start-page: 378 year: 2022 end-page: 392 ident: bb0040 article-title: Process intensification from conventional to advanced distillations: Past, present, and future publication-title: Chemical Engineering Research and Design – volume: 65 start-page: 1281 year: 2019 end-page: 1293 ident: bb0115 article-title: Design and control of pressure-swing distillation for separating ternary systems with three binary minimum azeotropes publication-title: AIChE Journal – volume: 215 year: 2020 ident: bb0150 article-title: Optimization and control of energy saving side-stream extractive distillation with heat integration for separating ethyl acetate-ethanol azeotrope publication-title: Chem Eng Sci – volume: 294 year: 2022 ident: bb0090 article-title: Novel control strategy of intensified hybrid reactive-extractive distillation process for the separation of water-containing ternary mixtures publication-title: Sep Purif Technol – volume: 32 start-page: 121 year: 2003 end-page: 213 ident: bb0015 article-title: Extractive Distillation: A Review publication-title: Separation & Purification Reviews – volume: 186 start-page: 497 year: 2022 end-page: 510 ident: bb0050 article-title: Design and optimization of organic Rankine cycle using different working fluids for recovering waste heat in reaction-separation process of cumene synthesis publication-title: Chemical Engineering Research and Design – volume: 9 start-page: 2150 year: 2021 ident: bb0035 article-title: Advancements in optimization and control techniques for intensifying processes publication-title: Processes – volume: 110 start-page: 160 year: 2016 end-page: 171 ident: bb0060 article-title: Effect of feed temperature on economics and controllability of pressure-swing distillation for separating binary azeotrope publication-title: Chemical Engineering & Processing: Process Intensification – volume: 451 year: 2023 ident: bb0055 article-title: Design and optimisation of novel hybrid side-stream reactive-extractive distillation for recovery of isopropyl alcohol and ethyl acetate from wastewater publication-title: Chemical Engineering Journal – volume: 27 start-page: 1247 year: 2019 end-page: 1256 ident: bb0010 article-title: Extractive distillation: Advances in conceptual design, solvent selection, and separation strategies publication-title: Chin J Chem Eng – volume: 352 year: 2025 ident: bb0110 article-title: A different strategy to reduce energy consumption for designing heterogeneous decanter-assisted advanced pressure-swing distillation process publication-title: Sep Purif Technol – volume: 34 start-page: 87 year: 2005 end-page: 129 ident: bb0005 article-title: Azeotropic Distillation: A Review of Mathematical Models publication-title: Separation & Purification Reviews – volume: 24 start-page: 1584 year: 2016 end-page: 1599 ident: bb0075 article-title: Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation publication-title: Chin J Chem Eng – volume: 156 start-page: 336 year: 2015 end-page: 347 ident: bb0120 article-title: Improved design of an extractive distillation system with an intermediate-boiling solvent publication-title: Sep Purif Technol – volume: 76 start-page: 137 year: 2015 end-page: 149 ident: bb0070 article-title: Separating an azeotropic mixture of toluene and ethanol via heat integration pressure swing distillation publication-title: Comput Chem Eng – volume: 177 start-page: 354 year: 2018 end-page: 368 ident: bb0130 article-title: Optimization of pre-concentration, entrainer recycle and pressure selection for the extractive distillation of acetonitrile-water with ethylene glycol publication-title: Chem Eng Sci – volume: 199 year: 2025 ident: bb0095 article-title: Dynamics and control of discretely heat integrated distillation columns publication-title: Comput Chem Eng – volume: 360 year: 2025 ident: bb0100 article-title: Control of a three-column distillation process for separating acetonitrile, chloroform and ethanol publication-title: Sep Purif Technol – volume: 62 start-page: 2080 year: 2023 end-page: 2089 ident: bb0105 article-title: Novel Process Development of Hybrid Reactive–Extractive Distillation System for the Separation of a Cyclohexane/Isopropanol/Water Mixture with Different Feed Compositions publication-title: Ind Eng Chem Res – volume: 310 year: 2023 ident: bb0085 article-title: Novel temperature-control strategy for single column side-stream extractive distillation process with intermediate-boiling entrainer publication-title: Sep Purif Technol – volume: 183 year: 2024 ident: bb0135 article-title: Energy-efficient heterogeneous triple-column azeotropic distillation process for recovery of ethyl acetate and methanol from wastewater publication-title: Comput Chem Eng – volume: 284 year: 2022 ident: bb0030 article-title: The evolution of process design and control for ternary azeotropic separation: Recent advances in distillation and future directions publication-title: Sep Purif Technol – volume: 57 start-page: 9554 year: 2018 end-page: 9570 ident: bb0145 article-title: Design, Optimization, and Retrofit of the Formic Acid Process I: Base Case Design and Dividing-Wall Column Retrofit publication-title: Ind Eng Chem Res – volume: 50 start-page: 28 year: 2016 end-page: 40 ident: bb0025 article-title: A review of ternary azeotropic mixtures advanced separation strategies publication-title: Theoretical Foundations of Chemical Engineering – volume: 360 year: 2025 ident: 10.1016/j.seppur.2025.135963_bb0100 article-title: Control of a three-column distillation process for separating acetonitrile, chloroform and ethanol publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2024.131081 – volume: 54 start-page: 12908 year: 2015 ident: 10.1016/j.seppur.2025.135963_bb0065 article-title: Effect of Solvent Flow Rates on Controllability of Extractive Distillation for Separating Binary Azeotropic Mixture publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.5b03666 – volume: 24 start-page: 1584 year: 2016 ident: 10.1016/j.seppur.2025.135963_bb0075 article-title: Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation publication-title: Chin J Chem Eng doi: 10.1016/j.cjche.2016.06.013 – start-page: 167 year: 2021 ident: 10.1016/j.seppur.2025.135963_bb0080 article-title: Optimal design and control of an energy-efficient triple-side-stream quaternary extractive distillation process publication-title: Chemical Engineering and Processing - Process Intensification – volume: 199 year: 2025 ident: 10.1016/j.seppur.2025.135963_bb0095 article-title: Dynamics and control of discretely heat integrated distillation columns publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2025.109144 – volume: 57 start-page: 9554 year: 2018 ident: 10.1016/j.seppur.2025.135963_bb0145 article-title: Design, Optimization, and Retrofit of the Formic Acid Process I: Base Case Design and Dividing-Wall Column Retrofit publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.8b00883 – volume: 9 start-page: 2150 year: 2021 ident: 10.1016/j.seppur.2025.135963_bb0035 article-title: Advancements in optimization and control techniques for intensifying processes publication-title: Processes doi: 10.3390/pr9122150 – volume: 188 start-page: 378 year: 2022 ident: 10.1016/j.seppur.2025.135963_bb0040 article-title: Process intensification from conventional to advanced distillations: Past, present, and future publication-title: Chemical Engineering Research and Design doi: 10.1016/j.cherd.2022.09.056 – volume: 186 start-page: 497 year: 2022 ident: 10.1016/j.seppur.2025.135963_bb0050 article-title: Design and optimization of organic Rankine cycle using different working fluids for recovering waste heat in reaction-separation process of cumene synthesis publication-title: Chemical Engineering Research and Design doi: 10.1016/j.cherd.2022.08.022 – volume: 65 start-page: 1281 year: 2019 ident: 10.1016/j.seppur.2025.135963_bb0115 article-title: Design and control of pressure-swing distillation for separating ternary systems with three binary minimum azeotropes publication-title: AIChE Journal doi: 10.1002/aic.16526 – volume: 32 start-page: 121 year: 2003 ident: 10.1016/j.seppur.2025.135963_bb0015 article-title: Extractive Distillation: A Review publication-title: Separation & Purification Reviews doi: 10.1081/SPM-120026627 – volume: 8 start-page: 508 year: 2020 ident: 10.1016/j.seppur.2025.135963_bb0125 article-title: Multi-Objective Optimization Applications in Chemical Process Engineering: Tutorial and Review publication-title: Processes doi: 10.3390/pr8050508 – volume: 110 start-page: 160 year: 2016 ident: 10.1016/j.seppur.2025.135963_bb0060 article-title: Effect of feed temperature on economics and controllability of pressure-swing distillation for separating binary azeotrope publication-title: Chemical Engineering & Processing: Process Intensification doi: 10.1016/j.cep.2016.10.011 – volume: 76 start-page: 137 year: 2015 ident: 10.1016/j.seppur.2025.135963_bb0070 article-title: Separating an azeotropic mixture of toluene and ethanol via heat integration pressure swing distillation publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2015.02.016 – volume: 183 year: 2024 ident: 10.1016/j.seppur.2025.135963_bb0135 article-title: Energy-efficient heterogeneous triple-column azeotropic distillation process for recovery of ethyl acetate and methanol from wastewater publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2024.108618 – volume: 263 year: 2022 ident: 10.1016/j.seppur.2025.135963_bb0045 article-title: Conceptual design of sustainable extractive distillation processes combining preconcentration and extractive distillation functions for separating ternary multi-azeotropic mixture publication-title: Chem Eng Sci doi: 10.1016/j.ces.2022.118088 – volume: 10 start-page: 49 year: 2015 ident: 10.1016/j.seppur.2025.135963_bb0140 article-title: Multi-objective optimization for the design and operation of energy efficient chemical processes and power generation publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2015.08.006 – volume: 284 year: 2022 ident: 10.1016/j.seppur.2025.135963_bb0030 article-title: The evolution of process design and control for ternary azeotropic separation: Recent advances in distillation and future directions publication-title: Sep Purif Technol – volume: 27 start-page: 1247 year: 2019 ident: 10.1016/j.seppur.2025.135963_bb0010 article-title: Extractive distillation: Advances in conceptual design, solvent selection, and separation strategies publication-title: Chin J Chem Eng doi: 10.1016/j.cjche.2018.08.018 – volume: 62 start-page: 2080 year: 2023 ident: 10.1016/j.seppur.2025.135963_bb0105 article-title: Novel Process Development of Hybrid Reactive–Extractive Distillation System for the Separation of a Cyclohexane/Isopropanol/Water Mixture with Different Feed Compositions publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.2c02889 – volume: 177 start-page: 354 year: 2018 ident: 10.1016/j.seppur.2025.135963_bb0130 article-title: Optimization of pre-concentration, entrainer recycle and pressure selection for the extractive distillation of acetonitrile-water with ethylene glycol publication-title: Chem Eng Sci doi: 10.1016/j.ces.2017.11.035 – volume: 50 start-page: 28 year: 2016 ident: 10.1016/j.seppur.2025.135963_bb0025 article-title: A review of ternary azeotropic mixtures advanced separation strategies publication-title: Theoretical Foundations of Chemical Engineering doi: 10.1134/S0040579516010140 – volume: 352 year: 2025 ident: 10.1016/j.seppur.2025.135963_bb0110 article-title: A different strategy to reduce energy consumption for designing heterogeneous decanter-assisted advanced pressure-swing distillation process publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2024.128280 – volume: 34 start-page: 87 year: 2005 ident: 10.1016/j.seppur.2025.135963_bb0005 article-title: Azeotropic Distillation: A Review of Mathematical Models publication-title: Separation & Purification Reviews doi: 10.1081/SPM-200054984 – volume: 215 year: 2020 ident: 10.1016/j.seppur.2025.135963_bb0150 article-title: Optimization and control of energy saving side-stream extractive distillation with heat integration for separating ethyl acetate-ethanol azeotrope publication-title: Chem Eng Sci doi: 10.1016/j.ces.2019.115373 – volume: 156 start-page: 336 year: 2015 ident: 10.1016/j.seppur.2025.135963_bb0120 article-title: Improved design of an extractive distillation system with an intermediate-boiling solvent publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2015.10.020 – volume: 44 start-page: 308 year: 2015 ident: 10.1016/j.seppur.2025.135963_bb0020 article-title: State-of-the-Art Technologies for Separation of Azeotropic Mixtures publication-title: Separation & Purification Reviews doi: 10.1080/15422119.2014.963607 – volume: 294 year: 2022 ident: 10.1016/j.seppur.2025.135963_bb0090 article-title: Novel control strategy of intensified hybrid reactive-extractive distillation process for the separation of water-containing ternary mixtures publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2022.121159 – volume: 310 year: 2023 ident: 10.1016/j.seppur.2025.135963_bb0085 article-title: Novel temperature-control strategy for single column side-stream extractive distillation process with intermediate-boiling entrainer publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2023.123163 – volume: 451 year: 2023 ident: 10.1016/j.seppur.2025.135963_bb0055 article-title: Design and optimisation of novel hybrid side-stream reactive-extractive distillation for recovery of isopropyl alcohol and ethyl acetate from wastewater publication-title: Chemical Engineering Journal |
| SSID | ssj0017182 |
| Score | 2.4816911 |
| Snippet | The design of complex azeotropic distillation system are typically based on a fixed nominal feed composition, i.e., assuming the same process setup remains... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 135963 |
| SubjectTerms | Distillation Feed composition Process optimization Separation feasibility Separations |
| Title | Revisiting complex azeotropic distillation design: How feed composition can change separation sequences |
| URI | https://dx.doi.org/10.1016/j.seppur.2025.135963 |
| Volume | 382 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1383-5866 databaseCode: AIEXJ dateStart: 19970519 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017182 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELaWx4EeqraAoC_5wA0FsU4cO9xWFVVbVagCKm25RLbjwCKURCGLVvyH_ueOH3nQrVA5cIlW3sTJZr4dz4y_mUFoT8uIHhIFbkksowAQIoMkSrJgLLhZ4ERMclsy_zs7OeHTafJjNPrd5sLc3bCi4ItFUj2rqGEMhG1SZ58g7m5SGIDPIHQ4gtjh-F-CP7X54o1Ppq1u9GJf3OuyqctqpsyGTGMaDVmxZ5a-YYICprNcDguZvcTzuAwhzCcG799qVyMcRjvy9dCuPeu_t5UH5rWhILmBZil6_8sHqS-utO2Y1JGAROnw00O2PXVS9ttXLmR7Navns2HQglies8uM93oWHOOActdwpVXEoWtD5FXpOKSJ031LWt4FHExSfgW_B5x8Qg_60x8W1f5rsesoiC277Tp1s6RmltTNsoLWCKMJKMm1ydfj6bduWwoWcrt93j59m4tpCYPLT_NvW2dgv5y_Qi-944EnDjCv0UgXb9CLQTnKTXTZQwd76OAeOngIHeygc4QBONgABw-AgwE42AEH98DBHXC20M_Px-efvgS-EUegwL5tAlPjD0xlCf_nMculzFUmIqUozyVofMZoTqSgMhJZKBMpMx0zxTlV8ViznHAZbqPVoiz0DsKhyCiV4CtFOYnAdRCHmSZhzAUjPFMk3kVB-8rSytVbSR8T1S5i7XtNvc3obMEUwPLolW-feKd3aKNH8nu02tRz_QGtq7tmdlt_9Ej5A_kylag |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+complex+azeotropic+distillation+design%3A+How+feed+composition+can+change+separation+sequences&rft.jtitle=Separation+and+purification+technology&rft.au=Yang%2C+Zhenning&rft.au=Gao%2C+Tian&rft.au=Yang%2C+Ao&rft.au=Sun%2C+Shirui&rft.date=2026-02-26&rft.issn=1383-5866&rft.volume=382&rft.spage=135963&rft_id=info:doi/10.1016%2Fj.seppur.2025.135963&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seppur_2025_135963 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |