Discriminative aging subspace learning for age estimation
Human age estimation from facial images has become an active research topic in computer vision field because of various real-world applications. Temporal property of facial aging display sequential patterns that lie on the low-dimensional aging manifold. In this paper, we propose hidden factor analy...
Gespeichert in:
| Veröffentlicht in: | Soft computing (Berlin, Germany) Jg. 26; H. 18; S. 9189 - 9198 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2022
|
| Schlagworte: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Human age estimation from facial images has become an active research topic in computer vision field because of various real-world applications. Temporal property of facial aging display sequential patterns that lie on the low-dimensional aging manifold. In this paper, we propose hidden factor analysis (HFA) model-based discriminative manifold learning method for age estimation. The hidden factor analysis decomposes facial features into independent age factor and identity factor. Various age invariant face recognition systems in the literature utilize identity factor for face recognition; however, the age factor remains unutilized. The age component of the hidden factor analysis model depends on the subject’s age. Thus it carries significant age-related information. In this paper, we demonstrate that such aging patterns can be effectively extracted from the HFA-based discriminant subspace learning algorithm. Next, we have applied multiple regression methods on low-dimensional aging features learned from the HFA model. Effect of reduced dimensionality on the accuracy has been evaluated by extensive experiments and compared with the state-of-the-art methods. Effectiveness and robustness in terms of MAE and CS of the proposed framework are demonstrated using experimental analysis on a large-scale aging database MORPH II. The accuracy of our method is found superior to the current state-of-the-art methods. |
|---|---|
| AbstractList | Human age estimation from facial images has become an active research topic in computer vision field because of various real-world applications. Temporal property of facial aging display sequential patterns that lie on the low-dimensional aging manifold. In this paper, we propose hidden factor analysis (HFA) model-based discriminative manifold learning method for age estimation. The hidden factor analysis decomposes facial features into independent age factor and identity factor. Various age invariant face recognition systems in the literature utilize identity factor for face recognition; however, the age factor remains unutilized. The age component of the hidden factor analysis model depends on the subject’s age. Thus it carries significant age-related information. In this paper, we demonstrate that such aging patterns can be effectively extracted from the HFA-based discriminant subspace learning algorithm. Next, we have applied multiple regression methods on low-dimensional aging features learned from the HFA model. Effect of reduced dimensionality on the accuracy has been evaluated by extensive experiments and compared with the state-of-the-art methods. Effectiveness and robustness in terms of MAE and CS of the proposed framework are demonstrated using experimental analysis on a large-scale aging database MORPH II. The accuracy of our method is found superior to the current state-of-the-art methods. |
| Author | Sawant, Manisha Bhurchandi, Kishor M. |
| Author_xml | – sequence: 1 givenname: Manisha orcidid: 0000-0002-3682-4146 surname: Sawant fullname: Sawant, Manisha email: mpparlewar@gmail.com organization: Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology – sequence: 2 givenname: Kishor M. surname: Bhurchandi fullname: Bhurchandi, Kishor M. organization: Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology |
| BookMark | eNp9j81OwzAQhC1UJNrCC3DKCxjWfzE-ovIrVeICZ8uYdeSqdSo7RaJPj9Nw5rSj3ZnVfAsyS31CQq4Z3DAAfVsAFAAFziloIQQ9npE5k1Voqc3spDnVrRQXZFHKBoAzrcScmIdYfI67mNwQv7FxXUxdUw6fZe88Nlt0OY2b0Od6wwbLEHfV2qdLch7ctuDV31ySj6fH99ULXb89v67u19QzzQfacu3RcAPImZFBoVeeO8WYQ6MVeFlLKQFSjQaB3H0p1CzcCRfaEEwQS8Knvz73pWQMdl_7uvxjGdgR3k7wtsLbE7w91pCYQqWaU4fZbvpDTrXnf6lfGOtfBg |
| Cites_doi | 10.1109/TSMCC.2012.2192727 10.1109/ICCV.2007.4409052 10.1109/TIP.2008.924280 10.1109/34.927467 10.1109/LSP.2017.2661983 10.1109/ICCV.2007.4409069 10.1109/TPAMI.2008.48 10.1109/CVPR.2005.177 10.1109/CVPR.2015.7299166 10.1109/34.993553 10.1109/ICPR.2006.230 10.1109/ICB.2013.6613022 10.1109/79.543975 10.1007/978-1-4757-3264-1 10.1109/ICPR.2008.4761847 10.1126/science.290.5500.2323 10.1109/CVPR.2016.529 10.1109/TPAMI.2007.70733 10.1109/CVPRW.2016.95 10.1016/j.neucom.2016.10.010 10.1155/2014/242846 10.1109/CVPR.2009.5206681 10.1109/FG.2013.6553737 10.1109/TPAMI.2006.244 10.1016/j.patcog.2012.09.011 10.1145/2647868.2655020 10.1007/978-3-030-10674-4 10.1109/CVPR.2011.5995437 10.1016/j.patcog.2015.12.003 10.1109/FG.2013.6553694 10.1109/TPAMI.2014.2362759 10.1109/TIFS.2017.2695456 10.1126/science.290.5500.2319 10.1016/j.patrec.2015.06.006 10.1016/j.cie.2021.107250 10.1109/CVPR.2010.5539975 10.1162/089976603321780317 10.1109/ICCV.1999.790410 10.1016/j.eswa.2021.116158 10.1109/ICASSP.2012.6288182 10.1007/s11042-019-7589-1 10.1109/TMM.2008.921847 10.1109/ICCV.2013.357 10.1109/CVPR.2011.5995404 10.1109/TPAMI.2013.51 10.1109/ACCESS.2018.2889873 10.1016/j.cma.2020.113609 10.1145/1631272.1631334 10.1109/WACV.2015.77 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00500-022-07333-z |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 9198 |
| ExternalDocumentID | 10_1007_s00500_022_07333_z |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c172t-627ce9290e2194f5ec5c2a511ae9750c4764530450e213e2ad5e71f83af6ff9f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000825170900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-7643 |
| IngestDate | Sat Nov 29 03:36:19 EST 2025 Fri Feb 21 02:45:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | Regression Aging manifold Age estimation Hidden factor analysis (HFA) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c172t-627ce9290e2194f5ec5c2a511ae9750c4764530450e213e2ad5e71f83af6ff9f3 |
| ORCID | 0000-0002-3682-4146 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1007_s00500_022_07333_z springer_journals_10_1007_s00500_022_07333_z |
| PublicationCentury | 2000 |
| PublicationDate | 20220900 2022-09-00 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 9 year: 2022 text: 20220900 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | Gong D, Li Z, Tao D, Liu J, Li X (2015) A maximum entropy feature descriptor for age invariant face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5289–5297 SawantMBhurchandiKHierarchical facial age estimation using gaussian process regressionIEEE Access201979142915210.1109/ACCESS.2018.2889873 Xiao B, Yang X, Xu Y, Zha H (2009) Learning distance metric for regression by semidefinite programming with application to human age estimation. In: Proceedings of the 17th ACM international conference on Multimedia, pp 451–460 ChangCCLinCJLibsvm: a library for support vector machinesACM Transact Intell Syst Technol (TIST)20112327 HuertaIFernándezCSeguraCHernandoJPratiAA deep analysis on age estimationPattern Recognit Lett20156823924910.1016/j.patrec.2015.06.006 Ahonen T, Rahtu E, Ojansivu V, Heikkila J (2008) Recognition of blurred faces using local phase quantization. In: 2008 19th international conference on pattern recognition, pp 1–4. IEEE PontesJKBrittoASJrFookesCKoerichALA flexible hierarchical approach for facial age estimation based on multiple featuresPattern Recognit201654345110.1016/j.patcog.2015.12.003 Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol 1, pp 886–893. IEEE XuCLiuQYeMAge invariant face recognition and retrieval by coupled auto-encoder networksNeurocomputing2017222627110.1016/j.neucom.2016.10.010 FuYHuangTSHuman age estimation with regression on discriminative aging manifoldIEEE Transact Multimed200810457858410.1109/TMM.2008.921847 Zhang Y, Yeung DY (2010) Multi-task warped gaussian process for personalized age estimation. In: Computer vision and pattern recognition (CVPR), 2010 IEEE conference on, pp 2622–2629. IEEE MoonTKThe expectation-maximization algorithmIEEE Signal Process Mag1996136476010.1109/79.543975 GengXYinCZhouZHFacial age estimation by learning from label distributionsIEEE Transact Pattern Anal Mach Intell201335102401241210.1109/TPAMI.2013.51 Guo G, Mu G (2011) Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: Computer vision and pattern recognition (cvpr), 2011 IEEE conference on, pp 657–664. IEEE Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision, vol 2, pp 1150–1157. IEEE Ling H, Soatto S, Ramanathan N, Jacobs DW (2007) A study of face recognition as people age. In: Computer vision, 2007. ICCV 2007. IEEE 11th international conference on, pp 1–8. IEEE AbualigahLYousriDAbd ElazizMEweesAAAl-QanessMAGandomiAHAquila optimizer: a novel meta-heuristic optimization algorithmComput Ind Eng202115710.1016/j.cie.2021.107250 ChaoWLLiuJZDingJJFacial age estimation based on label-sensitive learning and age-oriented regressionPattern Recognit201346362864110.1016/j.patcog.2012.09.011 Thukral P, Mitra K, Chellappa R (2012) A hierarchical approach for human age estimation. In: Acoustics, speech and signal processing (ICASSP), 2012 IEEE international conference on, pp 1529–1532. IEEE Zhu K, Gong D, Li Z, Tang X (2014) Orthogonal gaussian process for automatic age estimation. In: Proceedings of the 22nd ACM international conference on multimedia, pp 857–860. ACM Liang Y, Wang X, Zhang L, Wang Z (2014) A hierarchical framework for facial age estimation. Mathematical Probl Eng 2014 LuJTanYPOrdinary preserving manifold analysis for human age and head pose estimationIEEE Transact Human-Machine Syst201343224925810.1109/TSMCC.2012.2192727 CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Transact Pattern Anal Mach Intell200123668168510.1109/34.927467 LanitisATaylorCJCootesTFToward automatic simulation of aging effects on face imagesIEEE Transact Pattern Anal Mach Intell200224444245510.1109/34.993553 HanHOttoCLiuXJainAKDemographic estimation from face images: human versus machine performanceIEEE Transact Pattern Anal Mach Intell20153761148116110.1109/TPAMI.2014.2362759 LiHZouHHuHModified hidden factor analysis for cross-age face recognitionIEEE Signal Process Lett201724446546910.1109/LSP.2017.2661983 GuoGFuYDyerCRHuangTSImage-based human age estimation by manifold learning and locally adjusted robust regressionIEEE Transacti Image Process200817711781188251669810.1109/TIP.2008.924280 IqbalMTBShoyaibMRyuBAbdullah-Al-WadudMChaeODirectional age-primitive pattern (dapp) for human age group recognition and age estimationIEEE Transact Inf Forensics Secur201712112505251710.1109/TIFS.2017.2695456 SawantMAddepalliSBhurchandiKAge estimation using local direction and moment pattern (ldmp) featuresMultime Tools Appl20197821304193044110.1007/s11042-019-7589-1 Han H, Otto C, Jain A.K (2013) Age estimation from face images: human versus machine performance. In: Biometrics (ICB), 2013 international conference on, pp 1–8. IEEE Vapnik V (1999) The nature of statistical learning theory. Springer science & business media Abualigah LMQ et al (2019) Feature selection and enhanced krill herd algorithm for text document clustering. Springer Guo G, Mu G (2013) Joint estimation of age, gender and ethnicity: Cca versus pls. In: 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG), pp 1–6. IEEE Gong D, Li Z, Lin D, Liu J, Tang X (2013) Hidden factor analysis for age invariant face recognition. In: Computer Vision (ICCV), 2013 IEEE International Conference on, pp 2872–2879. IEEE Chang KY, Chen CS, Hung YP (2011) Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: Computer vision and pattern recognition (cvpr), 2011 IEEE conference on, pp 585–592. IEEE GengXZhouZHSmith-MilesKAutomatic age estimation based on facial aging patternsIEEE Transact Pattern Anal Mach Intell200729122234224010.1109/TPAMI.2007.70733 Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326 Wen Y, Li Z, Qiao Y (2016) Latent factor guided convolutional neural networks for age-invariant face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4893–4901 AhonenTHadidAPietikainenMFace description with local binary patterns: application to face recognitionIEEE Transact Pattern Anal Mach Intell200628122037204110.1109/TPAMI.2006.244 Wang J, Shang Y, Su G, Lin X (2006) Age simulation for face recognition. In: Pattern recognition, 2006. ICPR 2006. 18th international conference on, vol. 3, pp 913–916. IEEE Huo Z, Yang X, Xing C, Zhou Y, Hou P, Lv J, Geng X (2016) Deep age distribution learning for apparent age estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 17–24 Prince SJ, Elder JH (2007) Probabilistic linear discriminant analysis for inferences about identity. In: Computer vision, 2007. ICCV 2007. IEEE 11th international conference on, pp 1–8. IEEE Ricanek K, Tesafaye T (2006) Morph: a longitudinal image database of normal adult age-progression. In: Automatic face and gesture recognition, 2006. FGR 2006. 7th international conference on, pp 341–345. IEEE TenenbaumJBDe SilvaVLangfordJCA global geometric framework for nonlinear dimensionality reductionScience200029055002319232310.1126/science.290.5500.2319 Weng R, Lu J, Yang G, Tan YP (2013) Multi-feature ordinal ranking for facial age estimation. In: 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG), pp 1–6. IEEE AbualigahLAbd ElazizMSumariPGeemZWGandomiAHReptile search algorithm (rsa): a nature-inspired meta-heuristic optimizerExpert Syst Appl202219110.1016/j.eswa.2021.116158 Guo G, Mu G, Fu Y, Huang T.S (2009) Human age estimation using bio-inspired features. In: Computer vision and pattern recognition, 2009. CVPR 2009. IEEE Conference on, pp 112–119. IEEE PrinceSJElderJHWarrellJFelisbertiFMTied factor analysis for face recognition across large pose differencesIEEE Transact Pattern Anal Mach Intell200830697098410.1109/TPAMI.2008.48 Wang X, Guo R, Kambhamettu C (2015) Deeply-learned feature for age estimation. In: Applications of computer vision (WACV), 2015 IEEE winter conference on, pp 534–541. IEEE AbualigahLDiabatAMirjaliliSAbd ElazizMGandomiAHThe arithmetic optimization algorithmComput Methods Appl Mech Eng2021376419929910.1016/j.cma.2020.113609 BelkinMNiyogiPLaplacian eigenmaps for dimensionality reduction and data representationNeural Comput20031561373139610.1162/089976603321780317 L Abualigah (7333_CR4) 2022; 191 L Abualigah (7333_CR3) 2021; 157 WL Chao (7333_CR10) 2013; 46 G Guo (7333_CR18) 2008; 17 MTB Iqbal (7333_CR26) 2017; 12 7333_CR48 7333_CR47 7333_CR46 7333_CR45 7333_CR44 7333_CR43 7333_CR42 7333_CR51 7333_CR50 Y Fu (7333_CR13) 2008; 10 CC Chang (7333_CR9) 2011; 2 M Belkin (7333_CR7) 2003; 15 7333_CR19 7333_CR17 7333_CR16 7333_CR12 X Geng (7333_CR14) 2007; 29 SJ Prince (7333_CR36) 2008; 30 X Geng (7333_CR15) 2013; 35 H Li (7333_CR28) 2017; 24 H Han (7333_CR22) 2015; 37 TK Moon (7333_CR33) 1996; 13 7333_CR29 I Huerta (7333_CR24) 2015; 68 JB Tenenbaum (7333_CR41) 2000; 290 7333_CR25 7333_CR23 7333_CR21 7333_CR1 7333_CR20 7333_CR30 C Xu (7333_CR49) 2017; 222 7333_CR6 TF Cootes (7333_CR11) 2001; 23 7333_CR8 M Sawant (7333_CR40) 2019; 78 JK Pontes (7333_CR34) 2016; 54 J Lu (7333_CR32) 2013; 43 T Ahonen (7333_CR5) 2006; 28 7333_CR38 M Sawant (7333_CR39) 2019; 7 7333_CR37 L Abualigah (7333_CR2) 2021; 376 A Lanitis (7333_CR27) 2002; 24 7333_CR35 7333_CR31 |
| References_xml | – reference: ChaoWLLiuJZDingJJFacial age estimation based on label-sensitive learning and age-oriented regressionPattern Recognit201346362864110.1016/j.patcog.2012.09.011 – reference: Wen Y, Li Z, Qiao Y (2016) Latent factor guided convolutional neural networks for age-invariant face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4893–4901 – reference: Thukral P, Mitra K, Chellappa R (2012) A hierarchical approach for human age estimation. In: Acoustics, speech and signal processing (ICASSP), 2012 IEEE international conference on, pp 1529–1532. IEEE – reference: AbualigahLDiabatAMirjaliliSAbd ElazizMGandomiAHThe arithmetic optimization algorithmComput Methods Appl Mech Eng2021376419929910.1016/j.cma.2020.113609 – reference: MoonTKThe expectation-maximization algorithmIEEE Signal Process Mag1996136476010.1109/79.543975 – reference: TenenbaumJBDe SilvaVLangfordJCA global geometric framework for nonlinear dimensionality reductionScience200029055002319232310.1126/science.290.5500.2319 – reference: GuoGFuYDyerCRHuangTSImage-based human age estimation by manifold learning and locally adjusted robust regressionIEEE Transacti Image Process200817711781188251669810.1109/TIP.2008.924280 – reference: AbualigahLYousriDAbd ElazizMEweesAAAl-QanessMAGandomiAHAquila optimizer: a novel meta-heuristic optimization algorithmComput Ind Eng202115710.1016/j.cie.2021.107250 – reference: Liang Y, Wang X, Zhang L, Wang Z (2014) A hierarchical framework for facial age estimation. Mathematical Probl Eng 2014 – reference: LiHZouHHuHModified hidden factor analysis for cross-age face recognitionIEEE Signal Process Lett201724446546910.1109/LSP.2017.2661983 – reference: Wang J, Shang Y, Su G, Lin X (2006) Age simulation for face recognition. In: Pattern recognition, 2006. ICPR 2006. 18th international conference on, vol. 3, pp 913–916. IEEE – reference: XuCLiuQYeMAge invariant face recognition and retrieval by coupled auto-encoder networksNeurocomputing2017222627110.1016/j.neucom.2016.10.010 – reference: Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol 1, pp 886–893. IEEE – reference: Zhu K, Gong D, Li Z, Tang X (2014) Orthogonal gaussian process for automatic age estimation. In: Proceedings of the 22nd ACM international conference on multimedia, pp 857–860. ACM – reference: Guo G, Mu G (2013) Joint estimation of age, gender and ethnicity: Cca versus pls. In: 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG), pp 1–6. IEEE – reference: LanitisATaylorCJCootesTFToward automatic simulation of aging effects on face imagesIEEE Transact Pattern Anal Mach Intell200224444245510.1109/34.993553 – reference: GengXYinCZhouZHFacial age estimation by learning from label distributionsIEEE Transact Pattern Anal Mach Intell201335102401241210.1109/TPAMI.2013.51 – reference: SawantMBhurchandiKHierarchical facial age estimation using gaussian process regressionIEEE Access201979142915210.1109/ACCESS.2018.2889873 – reference: Huo Z, Yang X, Xing C, Zhou Y, Hou P, Lv J, Geng X (2016) Deep age distribution learning for apparent age estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 17–24 – reference: CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Transact Pattern Anal Mach Intell200123668168510.1109/34.927467 – reference: LuJTanYPOrdinary preserving manifold analysis for human age and head pose estimationIEEE Transact Human-Machine Syst201343224925810.1109/TSMCC.2012.2192727 – reference: IqbalMTBShoyaibMRyuBAbdullah-Al-WadudMChaeODirectional age-primitive pattern (dapp) for human age group recognition and age estimationIEEE Transact Inf Forensics Secur201712112505251710.1109/TIFS.2017.2695456 – reference: Gong D, Li Z, Tao D, Liu J, Li X (2015) A maximum entropy feature descriptor for age invariant face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5289–5297 – reference: Weng R, Lu J, Yang G, Tan YP (2013) Multi-feature ordinal ranking for facial age estimation. In: 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG), pp 1–6. IEEE – reference: GengXZhouZHSmith-MilesKAutomatic age estimation based on facial aging patternsIEEE Transact Pattern Anal Mach Intell200729122234224010.1109/TPAMI.2007.70733 – reference: AbualigahLAbd ElazizMSumariPGeemZWGandomiAHReptile search algorithm (rsa): a nature-inspired meta-heuristic optimizerExpert Syst Appl202219110.1016/j.eswa.2021.116158 – reference: Wang X, Guo R, Kambhamettu C (2015) Deeply-learned feature for age estimation. In: Applications of computer vision (WACV), 2015 IEEE winter conference on, pp 534–541. IEEE – reference: Ahonen T, Rahtu E, Ojansivu V, Heikkila J (2008) Recognition of blurred faces using local phase quantization. In: 2008 19th international conference on pattern recognition, pp 1–4. IEEE – reference: Gong D, Li Z, Lin D, Liu J, Tang X (2013) Hidden factor analysis for age invariant face recognition. In: Computer Vision (ICCV), 2013 IEEE International Conference on, pp 2872–2879. IEEE – reference: AhonenTHadidAPietikainenMFace description with local binary patterns: application to face recognitionIEEE Transact Pattern Anal Mach Intell200628122037204110.1109/TPAMI.2006.244 – reference: SawantMAddepalliSBhurchandiKAge estimation using local direction and moment pattern (ldmp) featuresMultime Tools Appl20197821304193044110.1007/s11042-019-7589-1 – reference: Ling H, Soatto S, Ramanathan N, Jacobs DW (2007) A study of face recognition as people age. In: Computer vision, 2007. ICCV 2007. IEEE 11th international conference on, pp 1–8. IEEE – reference: Vapnik V (1999) The nature of statistical learning theory. Springer science & business media – reference: BelkinMNiyogiPLaplacian eigenmaps for dimensionality reduction and data representationNeural Comput20031561373139610.1162/089976603321780317 – reference: Abualigah LMQ et al (2019) Feature selection and enhanced krill herd algorithm for text document clustering. Springer – reference: PontesJKBrittoASJrFookesCKoerichALA flexible hierarchical approach for facial age estimation based on multiple featuresPattern Recognit201654345110.1016/j.patcog.2015.12.003 – reference: Han H, Otto C, Jain A.K (2013) Age estimation from face images: human versus machine performance. In: Biometrics (ICB), 2013 international conference on, pp 1–8. IEEE – reference: PrinceSJElderJHWarrellJFelisbertiFMTied factor analysis for face recognition across large pose differencesIEEE Transact Pattern Anal Mach Intell200830697098410.1109/TPAMI.2008.48 – reference: Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326 – reference: Guo G, Mu G, Fu Y, Huang T.S (2009) Human age estimation using bio-inspired features. In: Computer vision and pattern recognition, 2009. CVPR 2009. IEEE Conference on, pp 112–119. IEEE – reference: HanHOttoCLiuXJainAKDemographic estimation from face images: human versus machine performanceIEEE Transact Pattern Anal Mach Intell20153761148116110.1109/TPAMI.2014.2362759 – reference: Zhang Y, Yeung DY (2010) Multi-task warped gaussian process for personalized age estimation. In: Computer vision and pattern recognition (CVPR), 2010 IEEE conference on, pp 2622–2629. IEEE – reference: Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision, vol 2, pp 1150–1157. IEEE – reference: ChangCCLinCJLibsvm: a library for support vector machinesACM Transact Intell Syst Technol (TIST)20112327 – reference: Guo G, Mu G (2011) Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: Computer vision and pattern recognition (cvpr), 2011 IEEE conference on, pp 657–664. IEEE – reference: Ricanek K, Tesafaye T (2006) Morph: a longitudinal image database of normal adult age-progression. In: Automatic face and gesture recognition, 2006. FGR 2006. 7th international conference on, pp 341–345. IEEE – reference: Chang KY, Chen CS, Hung YP (2011) Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: Computer vision and pattern recognition (cvpr), 2011 IEEE conference on, pp 585–592. IEEE – reference: Prince SJ, Elder JH (2007) Probabilistic linear discriminant analysis for inferences about identity. In: Computer vision, 2007. ICCV 2007. IEEE 11th international conference on, pp 1–8. IEEE – reference: HuertaIFernándezCSeguraCHernandoJPratiAA deep analysis on age estimationPattern Recognit Lett20156823924910.1016/j.patrec.2015.06.006 – reference: Xiao B, Yang X, Xu Y, Zha H (2009) Learning distance metric for regression by semidefinite programming with application to human age estimation. In: Proceedings of the 17th ACM international conference on Multimedia, pp 451–460 – reference: FuYHuangTSHuman age estimation with regression on discriminative aging manifoldIEEE Transact Multimed200810457858410.1109/TMM.2008.921847 – volume: 43 start-page: 249 issue: 2 year: 2013 ident: 7333_CR32 publication-title: IEEE Transact Human-Machine Syst doi: 10.1109/TSMCC.2012.2192727 – ident: 7333_CR35 doi: 10.1109/ICCV.2007.4409052 – volume: 17 start-page: 1178 issue: 7 year: 2008 ident: 7333_CR18 publication-title: IEEE Transacti Image Process doi: 10.1109/TIP.2008.924280 – volume: 23 start-page: 681 issue: 6 year: 2001 ident: 7333_CR11 publication-title: IEEE Transact Pattern Anal Mach Intell doi: 10.1109/34.927467 – volume: 24 start-page: 465 issue: 4 year: 2017 ident: 7333_CR28 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2017.2661983 – ident: 7333_CR30 doi: 10.1109/ICCV.2007.4409069 – volume: 30 start-page: 970 issue: 6 year: 2008 ident: 7333_CR36 publication-title: IEEE Transact Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.48 – ident: 7333_CR12 doi: 10.1109/CVPR.2005.177 – ident: 7333_CR17 doi: 10.1109/CVPR.2015.7299166 – volume: 24 start-page: 442 issue: 4 year: 2002 ident: 7333_CR27 publication-title: IEEE Transact Pattern Anal Mach Intell doi: 10.1109/34.993553 – ident: 7333_CR45 doi: 10.1109/ICPR.2006.230 – ident: 7333_CR23 doi: 10.1109/ICB.2013.6613022 – volume: 13 start-page: 47 issue: 6 year: 1996 ident: 7333_CR33 publication-title: IEEE Signal Process Mag doi: 10.1109/79.543975 – ident: 7333_CR43 doi: 10.1007/978-1-4757-3264-1 – ident: 7333_CR6 doi: 10.1109/ICPR.2008.4761847 – ident: 7333_CR38 doi: 10.1126/science.290.5500.2323 – ident: 7333_CR47 doi: 10.1109/CVPR.2016.529 – volume: 29 start-page: 2234 issue: 12 year: 2007 ident: 7333_CR14 publication-title: IEEE Transact Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.70733 – ident: 7333_CR25 doi: 10.1109/CVPRW.2016.95 – volume: 222 start-page: 62 year: 2017 ident: 7333_CR49 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.010 – ident: 7333_CR29 doi: 10.1155/2014/242846 – ident: 7333_CR21 doi: 10.1109/CVPR.2009.5206681 – ident: 7333_CR20 doi: 10.1109/FG.2013.6553737 – volume: 28 start-page: 2037 issue: 12 year: 2006 ident: 7333_CR5 publication-title: IEEE Transact Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.244 – volume: 46 start-page: 628 issue: 3 year: 2013 ident: 7333_CR10 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2012.09.011 – ident: 7333_CR51 doi: 10.1145/2647868.2655020 – ident: 7333_CR1 doi: 10.1007/978-3-030-10674-4 – ident: 7333_CR8 doi: 10.1109/CVPR.2011.5995437 – volume: 54 start-page: 34 year: 2016 ident: 7333_CR34 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2015.12.003 – ident: 7333_CR46 doi: 10.1109/FG.2013.6553694 – volume: 37 start-page: 1148 issue: 6 year: 2015 ident: 7333_CR22 publication-title: IEEE Transact Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2362759 – volume: 12 start-page: 2505 issue: 11 year: 2017 ident: 7333_CR26 publication-title: IEEE Transact Inf Forensics Secur doi: 10.1109/TIFS.2017.2695456 – ident: 7333_CR37 – volume: 290 start-page: 2319 issue: 5500 year: 2000 ident: 7333_CR41 publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 68 start-page: 239 year: 2015 ident: 7333_CR24 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2015.06.006 – volume: 157 year: 2021 ident: 7333_CR3 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2021.107250 – ident: 7333_CR50 doi: 10.1109/CVPR.2010.5539975 – volume: 15 start-page: 1373 issue: 6 year: 2003 ident: 7333_CR7 publication-title: Neural Comput doi: 10.1162/089976603321780317 – ident: 7333_CR31 doi: 10.1109/ICCV.1999.790410 – volume: 191 year: 2022 ident: 7333_CR4 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116158 – ident: 7333_CR42 doi: 10.1109/ICASSP.2012.6288182 – volume: 78 start-page: 30419 issue: 21 year: 2019 ident: 7333_CR40 publication-title: Multime Tools Appl doi: 10.1007/s11042-019-7589-1 – volume: 10 start-page: 578 issue: 4 year: 2008 ident: 7333_CR13 publication-title: IEEE Transact Multimed doi: 10.1109/TMM.2008.921847 – ident: 7333_CR16 doi: 10.1109/ICCV.2013.357 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 7333_CR9 publication-title: ACM Transact Intell Syst Technol (TIST) – ident: 7333_CR19 doi: 10.1109/CVPR.2011.5995404 – volume: 35 start-page: 2401 issue: 10 year: 2013 ident: 7333_CR15 publication-title: IEEE Transact Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.51 – volume: 7 start-page: 9142 year: 2019 ident: 7333_CR39 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2889873 – volume: 376 year: 2021 ident: 7333_CR2 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – ident: 7333_CR48 doi: 10.1145/1631272.1631334 – ident: 7333_CR44 doi: 10.1109/WACV.2015.77 |
| SSID | ssj0021753 |
| Score | 2.31381 |
| Snippet | Human age estimation from facial images has become an active research topic in computer vision field because of various real-world applications. Temporal... |
| SourceID | crossref springer |
| SourceType | Index Database Publisher |
| StartPage | 9189 |
| SubjectTerms | Artificial Intelligence Computational Intelligence Control Data Analytics and Machine Learning Engineering Mathematical Logic and Foundations Mechatronics Robotics |
| Title | Discriminative aging subspace learning for age estimation |
| URI | https://link.springer.com/article/10.1007/s00500-022-07333-z |
| Volume | 26 |
| WOSCitedRecordID | wos000825170900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-7479 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1433-7479 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-7479 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Online Journals customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5s9aAHq1WxPkoO3jSw3XeOohZBKIIPeluSbCK91NKtHvrrnUmziwUR9LzDsswm33zDzHwDcJEOlMI4qrmVmKLEUSh5HlnDA6FInQWDrpJu2UQ2GuXjsXj0Q2FV3e1elyQdUjfDbiRVEnDqPqdFgxFftmAzIbUZytGfXps0y2tPIhFA7ogB14_K_PyO9XC0Xgt1IWbY-d_H7cGup5TsenUG9mHDTLvQqdc1MH97u7DzTXvwAMTthBCDOmEI8ZjbVsQqxBHMog3z2yTeGJJafGYYqXGsxhwP4WV493xzz_0eBa6Rnix4GmbaIA0KDMJTbBOjEx1KZFrSCCQMOkYvJVQxJYPIhLJMTDaweSRtaq2w0RG0p-9TcwwsTY2SuZK2VCJGmBdSK1XagZaYGqk46MFl7c5itpLLKBphZOejAn1UOB8Vyx5c1d4s_NWpfjE_-Zv5KWyH7odQQ9gZtBfzD3MOW_pzManmfWg9ZLzvTs4X3WG9Tg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB20CurBalWsnzl408B2v3MUtVSsRbBKbyFJk9JLlW710F_vJJstFkTQ8w7LMpvMvGFm3gO4SFtSYh5V1AgsUeIoFDSPjKYBk5adBZOuFE5sIuv18sGAPfmlsKKadq9aki5SL5bdLFVJQO30uRUajOh8FdZiK7Nja_Tn10WZ5bknEQggdsSE61dlfn7Hcjpa7oW6FNOu_-_jdmDbQ0pyXZ6BXVjRkwbUK7kG4m9vA7a-cQ_uAbsd24hhJ2FsxCNOrYgUGEewitbEq0mMCIJafKaJZeMo1xz34aV917_pUK-jQBXCkxlNw0xphEGBxvAUm0SrRIUCkZbQDAGDitFLie2YWoNIh2KY6Kxl8kiY1BhmogOoTd4m-hBImmopcinMULIYwzwTSsqhaSmBpZGMgyZcVu7k7yVdBl8QIzsfcfQRdz7i8yZcVd7k_uoUv5gf_c38HDY6_ccu7973Ho5hM3Q_xw6HnUBtNv3Qp7CuPmfjYnrmzs8XUqm_Yg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60iujBalWszxy8aeh2X909irUoSim-6C0k2UR6WUu7euivd5LNlhZEEM87LMu3ycw3zMw3ABdxWwiMo5JqjilKGPicJoFW1EuFUWfBoCu4XTbR6feT4TAdLEzx2273qiRZzjQYlaa8aI0z3ZoPvhnZEo-aTnSzdDCgs1VYCzGTMU1dT89v85TL6VAiKUAeicHXjc38_I7l0LRcF7Xhplf__4fuwLajmuS6PBu7sKLyBtSrNQ7E3eoGbC1oEu5B2h0ZT2I6ZIwnJHaLEZmif8HsWhG3ZeKdINnFZ4oYlY5y_HEfXnu3Lzd31O1XoBJpS0FjvyMV0iNPodsKdaRkJH2ODIyrFImEDBGxyFRSjUGgfJ5FqtPWScB1rHWqgwOo5R-5OgQSx0rwRHCdiTRE959yKUSm25JjyiRCrwmXFbRsXMposLlgssWIIUbMYsRmTbiqkGXuSk1_MT_6m_k5bAy6PfZ43384hk3f_hvTM3YCtWLyqU5hXX4Vo-nkzB6lbyqayEY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discriminative+aging+subspace+learning+for+age+estimation&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Sawant%2C+Manisha&rft.au=Bhurchandi%2C+Kishor+M.&rft.date=2022-09-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=26&rft.issue=18&rft.spage=9189&rft.epage=9198&rft_id=info:doi/10.1007%2Fs00500-022-07333-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_022_07333_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |