Discriminative aging subspace learning for age estimation

Human age estimation from facial images has become an active research topic in computer vision field because of various real-world applications. Temporal property of facial aging display sequential patterns that lie on the low-dimensional aging manifold. In this paper, we propose hidden factor analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Jg. 26; H. 18; S. 9189 - 9198
Hauptverfasser: Sawant, Manisha, Bhurchandi, Kishor M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Schlagworte:
ISSN:1432-7643, 1433-7479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Human age estimation from facial images has become an active research topic in computer vision field because of various real-world applications. Temporal property of facial aging display sequential patterns that lie on the low-dimensional aging manifold. In this paper, we propose hidden factor analysis (HFA) model-based discriminative manifold learning method for age estimation. The hidden factor analysis decomposes facial features into independent age factor and identity factor. Various age invariant face recognition systems in the literature utilize identity factor for face recognition; however, the age factor remains unutilized. The age component of the hidden factor analysis model depends on the subject’s age. Thus it carries significant age-related information. In this paper, we demonstrate that such aging patterns can be effectively extracted from the HFA-based discriminant subspace learning algorithm. Next, we have applied multiple regression methods on low-dimensional aging features learned from the HFA model. Effect of reduced dimensionality on the accuracy has been evaluated by extensive experiments and compared with the state-of-the-art methods. Effectiveness and robustness in terms of MAE and CS of the proposed framework are demonstrated using experimental analysis on a large-scale aging database MORPH II. The accuracy of our method is found superior to the current state-of-the-art methods.
AbstractList Human age estimation from facial images has become an active research topic in computer vision field because of various real-world applications. Temporal property of facial aging display sequential patterns that lie on the low-dimensional aging manifold. In this paper, we propose hidden factor analysis (HFA) model-based discriminative manifold learning method for age estimation. The hidden factor analysis decomposes facial features into independent age factor and identity factor. Various age invariant face recognition systems in the literature utilize identity factor for face recognition; however, the age factor remains unutilized. The age component of the hidden factor analysis model depends on the subject’s age. Thus it carries significant age-related information. In this paper, we demonstrate that such aging patterns can be effectively extracted from the HFA-based discriminant subspace learning algorithm. Next, we have applied multiple regression methods on low-dimensional aging features learned from the HFA model. Effect of reduced dimensionality on the accuracy has been evaluated by extensive experiments and compared with the state-of-the-art methods. Effectiveness and robustness in terms of MAE and CS of the proposed framework are demonstrated using experimental analysis on a large-scale aging database MORPH II. The accuracy of our method is found superior to the current state-of-the-art methods.
Author Sawant, Manisha
Bhurchandi, Kishor M.
Author_xml – sequence: 1
  givenname: Manisha
  orcidid: 0000-0002-3682-4146
  surname: Sawant
  fullname: Sawant, Manisha
  email: mpparlewar@gmail.com
  organization: Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology
– sequence: 2
  givenname: Kishor M.
  surname: Bhurchandi
  fullname: Bhurchandi, Kishor M.
  organization: Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology
BookMark eNp9j81OwzAQhC1UJNrCC3DKCxjWfzE-ovIrVeICZ8uYdeSqdSo7RaJPj9Nw5rSj3ZnVfAsyS31CQq4Z3DAAfVsAFAAFziloIQQ9npE5k1Voqc3spDnVrRQXZFHKBoAzrcScmIdYfI67mNwQv7FxXUxdUw6fZe88Nlt0OY2b0Od6wwbLEHfV2qdLch7ctuDV31ySj6fH99ULXb89v67u19QzzQfacu3RcAPImZFBoVeeO8WYQ6MVeFlLKQFSjQaB3H0p1CzcCRfaEEwQS8Knvz73pWQMdl_7uvxjGdgR3k7wtsLbE7w91pCYQqWaU4fZbvpDTrXnf6lfGOtfBg
Cites_doi 10.1109/TSMCC.2012.2192727
10.1109/ICCV.2007.4409052
10.1109/TIP.2008.924280
10.1109/34.927467
10.1109/LSP.2017.2661983
10.1109/ICCV.2007.4409069
10.1109/TPAMI.2008.48
10.1109/CVPR.2005.177
10.1109/CVPR.2015.7299166
10.1109/34.993553
10.1109/ICPR.2006.230
10.1109/ICB.2013.6613022
10.1109/79.543975
10.1007/978-1-4757-3264-1
10.1109/ICPR.2008.4761847
10.1126/science.290.5500.2323
10.1109/CVPR.2016.529
10.1109/TPAMI.2007.70733
10.1109/CVPRW.2016.95
10.1016/j.neucom.2016.10.010
10.1155/2014/242846
10.1109/CVPR.2009.5206681
10.1109/FG.2013.6553737
10.1109/TPAMI.2006.244
10.1016/j.patcog.2012.09.011
10.1145/2647868.2655020
10.1007/978-3-030-10674-4
10.1109/CVPR.2011.5995437
10.1016/j.patcog.2015.12.003
10.1109/FG.2013.6553694
10.1109/TPAMI.2014.2362759
10.1109/TIFS.2017.2695456
10.1126/science.290.5500.2319
10.1016/j.patrec.2015.06.006
10.1016/j.cie.2021.107250
10.1109/CVPR.2010.5539975
10.1162/089976603321780317
10.1109/ICCV.1999.790410
10.1016/j.eswa.2021.116158
10.1109/ICASSP.2012.6288182
10.1007/s11042-019-7589-1
10.1109/TMM.2008.921847
10.1109/ICCV.2013.357
10.1109/CVPR.2011.5995404
10.1109/TPAMI.2013.51
10.1109/ACCESS.2018.2889873
10.1016/j.cma.2020.113609
10.1145/1631272.1631334
10.1109/WACV.2015.77
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
DBID AAYXX
CITATION
DOI 10.1007/s00500-022-07333-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 9198
ExternalDocumentID 10_1007_s00500_022_07333_z
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c172t-627ce9290e2194f5ec5c2a511ae9750c4764530450e213e2ad5e71f83af6ff9f3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000825170900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Sat Nov 29 03:36:19 EST 2025
Fri Feb 21 02:45:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Regression
Aging manifold
Age estimation
Hidden factor analysis (HFA)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c172t-627ce9290e2194f5ec5c2a511ae9750c4764530450e213e2ad5e71f83af6ff9f3
ORCID 0000-0002-3682-4146
PageCount 10
ParticipantIDs crossref_primary_10_1007_s00500_022_07333_z
springer_journals_10_1007_s00500_022_07333_z
PublicationCentury 2000
PublicationDate 20220900
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 9
  year: 2022
  text: 20220900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Gong D, Li Z, Tao D, Liu J, Li X (2015) A maximum entropy feature descriptor for age invariant face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5289–5297
SawantMBhurchandiKHierarchical facial age estimation using gaussian process regressionIEEE Access201979142915210.1109/ACCESS.2018.2889873
Xiao B, Yang X, Xu Y, Zha H (2009) Learning distance metric for regression by semidefinite programming with application to human age estimation. In: Proceedings of the 17th ACM international conference on Multimedia, pp 451–460
ChangCCLinCJLibsvm: a library for support vector machinesACM Transact Intell Syst Technol (TIST)20112327
HuertaIFernándezCSeguraCHernandoJPratiAA deep analysis on age estimationPattern Recognit Lett20156823924910.1016/j.patrec.2015.06.006
Ahonen T, Rahtu E, Ojansivu V, Heikkila J (2008) Recognition of blurred faces using local phase quantization. In: 2008 19th international conference on pattern recognition, pp 1–4. IEEE
PontesJKBrittoASJrFookesCKoerichALA flexible hierarchical approach for facial age estimation based on multiple featuresPattern Recognit201654345110.1016/j.patcog.2015.12.003
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol 1, pp 886–893. IEEE
XuCLiuQYeMAge invariant face recognition and retrieval by coupled auto-encoder networksNeurocomputing2017222627110.1016/j.neucom.2016.10.010
FuYHuangTSHuman age estimation with regression on discriminative aging manifoldIEEE Transact Multimed200810457858410.1109/TMM.2008.921847
Zhang Y, Yeung DY (2010) Multi-task warped gaussian process for personalized age estimation. In: Computer vision and pattern recognition (CVPR), 2010 IEEE conference on, pp 2622–2629. IEEE
MoonTKThe expectation-maximization algorithmIEEE Signal Process Mag1996136476010.1109/79.543975
GengXYinCZhouZHFacial age estimation by learning from label distributionsIEEE Transact Pattern Anal Mach Intell201335102401241210.1109/TPAMI.2013.51
Guo G, Mu G (2011) Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: Computer vision and pattern recognition (cvpr), 2011 IEEE conference on, pp 657–664. IEEE
Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision, vol 2, pp 1150–1157. IEEE
Ling H, Soatto S, Ramanathan N, Jacobs DW (2007) A study of face recognition as people age. In: Computer vision, 2007. ICCV 2007. IEEE 11th international conference on, pp 1–8. IEEE
AbualigahLYousriDAbd ElazizMEweesAAAl-QanessMAGandomiAHAquila optimizer: a novel meta-heuristic optimization algorithmComput Ind Eng202115710.1016/j.cie.2021.107250
ChaoWLLiuJZDingJJFacial age estimation based on label-sensitive learning and age-oriented regressionPattern Recognit201346362864110.1016/j.patcog.2012.09.011
Thukral P, Mitra K, Chellappa R (2012) A hierarchical approach for human age estimation. In: Acoustics, speech and signal processing (ICASSP), 2012 IEEE international conference on, pp 1529–1532. IEEE
Zhu K, Gong D, Li Z, Tang X (2014) Orthogonal gaussian process for automatic age estimation. In: Proceedings of the 22nd ACM international conference on multimedia, pp 857–860. ACM
Liang Y, Wang X, Zhang L, Wang Z (2014) A hierarchical framework for facial age estimation. Mathematical Probl Eng 2014
LuJTanYPOrdinary preserving manifold analysis for human age and head pose estimationIEEE Transact Human-Machine Syst201343224925810.1109/TSMCC.2012.2192727
CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Transact Pattern Anal Mach Intell200123668168510.1109/34.927467
LanitisATaylorCJCootesTFToward automatic simulation of aging effects on face imagesIEEE Transact Pattern Anal Mach Intell200224444245510.1109/34.993553
HanHOttoCLiuXJainAKDemographic estimation from face images: human versus machine performanceIEEE Transact Pattern Anal Mach Intell20153761148116110.1109/TPAMI.2014.2362759
LiHZouHHuHModified hidden factor analysis for cross-age face recognitionIEEE Signal Process Lett201724446546910.1109/LSP.2017.2661983
GuoGFuYDyerCRHuangTSImage-based human age estimation by manifold learning and locally adjusted robust regressionIEEE Transacti Image Process200817711781188251669810.1109/TIP.2008.924280
IqbalMTBShoyaibMRyuBAbdullah-Al-WadudMChaeODirectional age-primitive pattern (dapp) for human age group recognition and age estimationIEEE Transact Inf Forensics Secur201712112505251710.1109/TIFS.2017.2695456
SawantMAddepalliSBhurchandiKAge estimation using local direction and moment pattern (ldmp) featuresMultime Tools Appl20197821304193044110.1007/s11042-019-7589-1
Han H, Otto C, Jain A.K (2013) Age estimation from face images: human versus machine performance. In: Biometrics (ICB), 2013 international conference on, pp 1–8. IEEE
Vapnik V (1999) The nature of statistical learning theory. Springer science & business media
Abualigah LMQ et al (2019) Feature selection and enhanced krill herd algorithm for text document clustering. Springer
Guo G, Mu G (2013) Joint estimation of age, gender and ethnicity: Cca versus pls. In: 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG), pp 1–6. IEEE
Gong D, Li Z, Lin D, Liu J, Tang X (2013) Hidden factor analysis for age invariant face recognition. In: Computer Vision (ICCV), 2013 IEEE International Conference on, pp 2872–2879. IEEE
Chang KY, Chen CS, Hung YP (2011) Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: Computer vision and pattern recognition (cvpr), 2011 IEEE conference on, pp 585–592. IEEE
GengXZhouZHSmith-MilesKAutomatic age estimation based on facial aging patternsIEEE Transact Pattern Anal Mach Intell200729122234224010.1109/TPAMI.2007.70733
Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326
Wen Y, Li Z, Qiao Y (2016) Latent factor guided convolutional neural networks for age-invariant face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4893–4901
AhonenTHadidAPietikainenMFace description with local binary patterns: application to face recognitionIEEE Transact Pattern Anal Mach Intell200628122037204110.1109/TPAMI.2006.244
Wang J, Shang Y, Su G, Lin X (2006) Age simulation for face recognition. In: Pattern recognition, 2006. ICPR 2006. 18th international conference on, vol. 3, pp 913–916. IEEE
Huo Z, Yang X, Xing C, Zhou Y, Hou P, Lv J, Geng X (2016) Deep age distribution learning for apparent age estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 17–24
Prince SJ, Elder JH (2007) Probabilistic linear discriminant analysis for inferences about identity. In: Computer vision, 2007. ICCV 2007. IEEE 11th international conference on, pp 1–8. IEEE
Ricanek K, Tesafaye T (2006) Morph: a longitudinal image database of normal adult age-progression. In: Automatic face and gesture recognition, 2006. FGR 2006. 7th international conference on, pp 341–345. IEEE
TenenbaumJBDe SilvaVLangfordJCA global geometric framework for nonlinear dimensionality reductionScience200029055002319232310.1126/science.290.5500.2319
Weng R, Lu J, Yang G, Tan YP (2013) Multi-feature ordinal ranking for facial age estimation. In: 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG), pp 1–6. IEEE
AbualigahLAbd ElazizMSumariPGeemZWGandomiAHReptile search algorithm (rsa): a nature-inspired meta-heuristic optimizerExpert Syst Appl202219110.1016/j.eswa.2021.116158
Guo G, Mu G, Fu Y, Huang T.S (2009) Human age estimation using bio-inspired features. In: Computer vision and pattern recognition, 2009. CVPR 2009. IEEE Conference on, pp 112–119. IEEE
PrinceSJElderJHWarrellJFelisbertiFMTied factor analysis for face recognition across large pose differencesIEEE Transact Pattern Anal Mach Intell200830697098410.1109/TPAMI.2008.48
Wang X, Guo R, Kambhamettu C (2015) Deeply-learned feature for age estimation. In: Applications of computer vision (WACV), 2015 IEEE winter conference on, pp 534–541. IEEE
AbualigahLDiabatAMirjaliliSAbd ElazizMGandomiAHThe arithmetic optimization algorithmComput Methods Appl Mech Eng2021376419929910.1016/j.cma.2020.113609
BelkinMNiyogiPLaplacian eigenmaps for dimensionality reduction and data representationNeural Comput20031561373139610.1162/089976603321780317
L Abualigah (7333_CR4) 2022; 191
L Abualigah (7333_CR3) 2021; 157
WL Chao (7333_CR10) 2013; 46
G Guo (7333_CR18) 2008; 17
MTB Iqbal (7333_CR26) 2017; 12
7333_CR48
7333_CR47
7333_CR46
7333_CR45
7333_CR44
7333_CR43
7333_CR42
7333_CR51
7333_CR50
Y Fu (7333_CR13) 2008; 10
CC Chang (7333_CR9) 2011; 2
M Belkin (7333_CR7) 2003; 15
7333_CR19
7333_CR17
7333_CR16
7333_CR12
X Geng (7333_CR14) 2007; 29
SJ Prince (7333_CR36) 2008; 30
X Geng (7333_CR15) 2013; 35
H Li (7333_CR28) 2017; 24
H Han (7333_CR22) 2015; 37
TK Moon (7333_CR33) 1996; 13
7333_CR29
I Huerta (7333_CR24) 2015; 68
JB Tenenbaum (7333_CR41) 2000; 290
7333_CR25
7333_CR23
7333_CR21
7333_CR1
7333_CR20
7333_CR30
C Xu (7333_CR49) 2017; 222
7333_CR6
TF Cootes (7333_CR11) 2001; 23
7333_CR8
M Sawant (7333_CR40) 2019; 78
JK Pontes (7333_CR34) 2016; 54
J Lu (7333_CR32) 2013; 43
T Ahonen (7333_CR5) 2006; 28
7333_CR38
M Sawant (7333_CR39) 2019; 7
7333_CR37
L Abualigah (7333_CR2) 2021; 376
A Lanitis (7333_CR27) 2002; 24
7333_CR35
7333_CR31
References_xml – reference: ChaoWLLiuJZDingJJFacial age estimation based on label-sensitive learning and age-oriented regressionPattern Recognit201346362864110.1016/j.patcog.2012.09.011
– reference: Wen Y, Li Z, Qiao Y (2016) Latent factor guided convolutional neural networks for age-invariant face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4893–4901
– reference: Thukral P, Mitra K, Chellappa R (2012) A hierarchical approach for human age estimation. In: Acoustics, speech and signal processing (ICASSP), 2012 IEEE international conference on, pp 1529–1532. IEEE
– reference: AbualigahLDiabatAMirjaliliSAbd ElazizMGandomiAHThe arithmetic optimization algorithmComput Methods Appl Mech Eng2021376419929910.1016/j.cma.2020.113609
– reference: MoonTKThe expectation-maximization algorithmIEEE Signal Process Mag1996136476010.1109/79.543975
– reference: TenenbaumJBDe SilvaVLangfordJCA global geometric framework for nonlinear dimensionality reductionScience200029055002319232310.1126/science.290.5500.2319
– reference: GuoGFuYDyerCRHuangTSImage-based human age estimation by manifold learning and locally adjusted robust regressionIEEE Transacti Image Process200817711781188251669810.1109/TIP.2008.924280
– reference: AbualigahLYousriDAbd ElazizMEweesAAAl-QanessMAGandomiAHAquila optimizer: a novel meta-heuristic optimization algorithmComput Ind Eng202115710.1016/j.cie.2021.107250
– reference: Liang Y, Wang X, Zhang L, Wang Z (2014) A hierarchical framework for facial age estimation. Mathematical Probl Eng 2014
– reference: LiHZouHHuHModified hidden factor analysis for cross-age face recognitionIEEE Signal Process Lett201724446546910.1109/LSP.2017.2661983
– reference: Wang J, Shang Y, Su G, Lin X (2006) Age simulation for face recognition. In: Pattern recognition, 2006. ICPR 2006. 18th international conference on, vol. 3, pp 913–916. IEEE
– reference: XuCLiuQYeMAge invariant face recognition and retrieval by coupled auto-encoder networksNeurocomputing2017222627110.1016/j.neucom.2016.10.010
– reference: Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol 1, pp 886–893. IEEE
– reference: Zhu K, Gong D, Li Z, Tang X (2014) Orthogonal gaussian process for automatic age estimation. In: Proceedings of the 22nd ACM international conference on multimedia, pp 857–860. ACM
– reference: Guo G, Mu G (2013) Joint estimation of age, gender and ethnicity: Cca versus pls. In: 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG), pp 1–6. IEEE
– reference: LanitisATaylorCJCootesTFToward automatic simulation of aging effects on face imagesIEEE Transact Pattern Anal Mach Intell200224444245510.1109/34.993553
– reference: GengXYinCZhouZHFacial age estimation by learning from label distributionsIEEE Transact Pattern Anal Mach Intell201335102401241210.1109/TPAMI.2013.51
– reference: SawantMBhurchandiKHierarchical facial age estimation using gaussian process regressionIEEE Access201979142915210.1109/ACCESS.2018.2889873
– reference: Huo Z, Yang X, Xing C, Zhou Y, Hou P, Lv J, Geng X (2016) Deep age distribution learning for apparent age estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 17–24
– reference: CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Transact Pattern Anal Mach Intell200123668168510.1109/34.927467
– reference: LuJTanYPOrdinary preserving manifold analysis for human age and head pose estimationIEEE Transact Human-Machine Syst201343224925810.1109/TSMCC.2012.2192727
– reference: IqbalMTBShoyaibMRyuBAbdullah-Al-WadudMChaeODirectional age-primitive pattern (dapp) for human age group recognition and age estimationIEEE Transact Inf Forensics Secur201712112505251710.1109/TIFS.2017.2695456
– reference: Gong D, Li Z, Tao D, Liu J, Li X (2015) A maximum entropy feature descriptor for age invariant face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5289–5297
– reference: Weng R, Lu J, Yang G, Tan YP (2013) Multi-feature ordinal ranking for facial age estimation. In: 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG), pp 1–6. IEEE
– reference: GengXZhouZHSmith-MilesKAutomatic age estimation based on facial aging patternsIEEE Transact Pattern Anal Mach Intell200729122234224010.1109/TPAMI.2007.70733
– reference: AbualigahLAbd ElazizMSumariPGeemZWGandomiAHReptile search algorithm (rsa): a nature-inspired meta-heuristic optimizerExpert Syst Appl202219110.1016/j.eswa.2021.116158
– reference: Wang X, Guo R, Kambhamettu C (2015) Deeply-learned feature for age estimation. In: Applications of computer vision (WACV), 2015 IEEE winter conference on, pp 534–541. IEEE
– reference: Ahonen T, Rahtu E, Ojansivu V, Heikkila J (2008) Recognition of blurred faces using local phase quantization. In: 2008 19th international conference on pattern recognition, pp 1–4. IEEE
– reference: Gong D, Li Z, Lin D, Liu J, Tang X (2013) Hidden factor analysis for age invariant face recognition. In: Computer Vision (ICCV), 2013 IEEE International Conference on, pp 2872–2879. IEEE
– reference: AhonenTHadidAPietikainenMFace description with local binary patterns: application to face recognitionIEEE Transact Pattern Anal Mach Intell200628122037204110.1109/TPAMI.2006.244
– reference: SawantMAddepalliSBhurchandiKAge estimation using local direction and moment pattern (ldmp) featuresMultime Tools Appl20197821304193044110.1007/s11042-019-7589-1
– reference: Ling H, Soatto S, Ramanathan N, Jacobs DW (2007) A study of face recognition as people age. In: Computer vision, 2007. ICCV 2007. IEEE 11th international conference on, pp 1–8. IEEE
– reference: Vapnik V (1999) The nature of statistical learning theory. Springer science & business media
– reference: BelkinMNiyogiPLaplacian eigenmaps for dimensionality reduction and data representationNeural Comput20031561373139610.1162/089976603321780317
– reference: Abualigah LMQ et al (2019) Feature selection and enhanced krill herd algorithm for text document clustering. Springer
– reference: PontesJKBrittoASJrFookesCKoerichALA flexible hierarchical approach for facial age estimation based on multiple featuresPattern Recognit201654345110.1016/j.patcog.2015.12.003
– reference: Han H, Otto C, Jain A.K (2013) Age estimation from face images: human versus machine performance. In: Biometrics (ICB), 2013 international conference on, pp 1–8. IEEE
– reference: PrinceSJElderJHWarrellJFelisbertiFMTied factor analysis for face recognition across large pose differencesIEEE Transact Pattern Anal Mach Intell200830697098410.1109/TPAMI.2008.48
– reference: Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326
– reference: Guo G, Mu G, Fu Y, Huang T.S (2009) Human age estimation using bio-inspired features. In: Computer vision and pattern recognition, 2009. CVPR 2009. IEEE Conference on, pp 112–119. IEEE
– reference: HanHOttoCLiuXJainAKDemographic estimation from face images: human versus machine performanceIEEE Transact Pattern Anal Mach Intell20153761148116110.1109/TPAMI.2014.2362759
– reference: Zhang Y, Yeung DY (2010) Multi-task warped gaussian process for personalized age estimation. In: Computer vision and pattern recognition (CVPR), 2010 IEEE conference on, pp 2622–2629. IEEE
– reference: Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision, vol 2, pp 1150–1157. IEEE
– reference: ChangCCLinCJLibsvm: a library for support vector machinesACM Transact Intell Syst Technol (TIST)20112327
– reference: Guo G, Mu G (2011) Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: Computer vision and pattern recognition (cvpr), 2011 IEEE conference on, pp 657–664. IEEE
– reference: Ricanek K, Tesafaye T (2006) Morph: a longitudinal image database of normal adult age-progression. In: Automatic face and gesture recognition, 2006. FGR 2006. 7th international conference on, pp 341–345. IEEE
– reference: Chang KY, Chen CS, Hung YP (2011) Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: Computer vision and pattern recognition (cvpr), 2011 IEEE conference on, pp 585–592. IEEE
– reference: Prince SJ, Elder JH (2007) Probabilistic linear discriminant analysis for inferences about identity. In: Computer vision, 2007. ICCV 2007. IEEE 11th international conference on, pp 1–8. IEEE
– reference: HuertaIFernándezCSeguraCHernandoJPratiAA deep analysis on age estimationPattern Recognit Lett20156823924910.1016/j.patrec.2015.06.006
– reference: Xiao B, Yang X, Xu Y, Zha H (2009) Learning distance metric for regression by semidefinite programming with application to human age estimation. In: Proceedings of the 17th ACM international conference on Multimedia, pp 451–460
– reference: FuYHuangTSHuman age estimation with regression on discriminative aging manifoldIEEE Transact Multimed200810457858410.1109/TMM.2008.921847
– volume: 43
  start-page: 249
  issue: 2
  year: 2013
  ident: 7333_CR32
  publication-title: IEEE Transact Human-Machine Syst
  doi: 10.1109/TSMCC.2012.2192727
– ident: 7333_CR35
  doi: 10.1109/ICCV.2007.4409052
– volume: 17
  start-page: 1178
  issue: 7
  year: 2008
  ident: 7333_CR18
  publication-title: IEEE Transacti Image Process
  doi: 10.1109/TIP.2008.924280
– volume: 23
  start-page: 681
  issue: 6
  year: 2001
  ident: 7333_CR11
  publication-title: IEEE Transact Pattern Anal Mach Intell
  doi: 10.1109/34.927467
– volume: 24
  start-page: 465
  issue: 4
  year: 2017
  ident: 7333_CR28
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2017.2661983
– ident: 7333_CR30
  doi: 10.1109/ICCV.2007.4409069
– volume: 30
  start-page: 970
  issue: 6
  year: 2008
  ident: 7333_CR36
  publication-title: IEEE Transact Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.48
– ident: 7333_CR12
  doi: 10.1109/CVPR.2005.177
– ident: 7333_CR17
  doi: 10.1109/CVPR.2015.7299166
– volume: 24
  start-page: 442
  issue: 4
  year: 2002
  ident: 7333_CR27
  publication-title: IEEE Transact Pattern Anal Mach Intell
  doi: 10.1109/34.993553
– ident: 7333_CR45
  doi: 10.1109/ICPR.2006.230
– ident: 7333_CR23
  doi: 10.1109/ICB.2013.6613022
– volume: 13
  start-page: 47
  issue: 6
  year: 1996
  ident: 7333_CR33
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/79.543975
– ident: 7333_CR43
  doi: 10.1007/978-1-4757-3264-1
– ident: 7333_CR6
  doi: 10.1109/ICPR.2008.4761847
– ident: 7333_CR38
  doi: 10.1126/science.290.5500.2323
– ident: 7333_CR47
  doi: 10.1109/CVPR.2016.529
– volume: 29
  start-page: 2234
  issue: 12
  year: 2007
  ident: 7333_CR14
  publication-title: IEEE Transact Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.70733
– ident: 7333_CR25
  doi: 10.1109/CVPRW.2016.95
– volume: 222
  start-page: 62
  year: 2017
  ident: 7333_CR49
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.010
– ident: 7333_CR29
  doi: 10.1155/2014/242846
– ident: 7333_CR21
  doi: 10.1109/CVPR.2009.5206681
– ident: 7333_CR20
  doi: 10.1109/FG.2013.6553737
– volume: 28
  start-page: 2037
  issue: 12
  year: 2006
  ident: 7333_CR5
  publication-title: IEEE Transact Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.244
– volume: 46
  start-page: 628
  issue: 3
  year: 2013
  ident: 7333_CR10
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.09.011
– ident: 7333_CR51
  doi: 10.1145/2647868.2655020
– ident: 7333_CR1
  doi: 10.1007/978-3-030-10674-4
– ident: 7333_CR8
  doi: 10.1109/CVPR.2011.5995437
– volume: 54
  start-page: 34
  year: 2016
  ident: 7333_CR34
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2015.12.003
– ident: 7333_CR46
  doi: 10.1109/FG.2013.6553694
– volume: 37
  start-page: 1148
  issue: 6
  year: 2015
  ident: 7333_CR22
  publication-title: IEEE Transact Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2362759
– volume: 12
  start-page: 2505
  issue: 11
  year: 2017
  ident: 7333_CR26
  publication-title: IEEE Transact Inf Forensics Secur
  doi: 10.1109/TIFS.2017.2695456
– ident: 7333_CR37
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 7333_CR41
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 68
  start-page: 239
  year: 2015
  ident: 7333_CR24
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2015.06.006
– volume: 157
  year: 2021
  ident: 7333_CR3
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107250
– ident: 7333_CR50
  doi: 10.1109/CVPR.2010.5539975
– volume: 15
  start-page: 1373
  issue: 6
  year: 2003
  ident: 7333_CR7
  publication-title: Neural Comput
  doi: 10.1162/089976603321780317
– ident: 7333_CR31
  doi: 10.1109/ICCV.1999.790410
– volume: 191
  year: 2022
  ident: 7333_CR4
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116158
– ident: 7333_CR42
  doi: 10.1109/ICASSP.2012.6288182
– volume: 78
  start-page: 30419
  issue: 21
  year: 2019
  ident: 7333_CR40
  publication-title: Multime Tools Appl
  doi: 10.1007/s11042-019-7589-1
– volume: 10
  start-page: 578
  issue: 4
  year: 2008
  ident: 7333_CR13
  publication-title: IEEE Transact Multimed
  doi: 10.1109/TMM.2008.921847
– ident: 7333_CR16
  doi: 10.1109/ICCV.2013.357
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 7333_CR9
  publication-title: ACM Transact Intell Syst Technol (TIST)
– ident: 7333_CR19
  doi: 10.1109/CVPR.2011.5995404
– volume: 35
  start-page: 2401
  issue: 10
  year: 2013
  ident: 7333_CR15
  publication-title: IEEE Transact Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.51
– volume: 7
  start-page: 9142
  year: 2019
  ident: 7333_CR39
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2889873
– volume: 376
  year: 2021
  ident: 7333_CR2
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– ident: 7333_CR48
  doi: 10.1145/1631272.1631334
– ident: 7333_CR44
  doi: 10.1109/WACV.2015.77
SSID ssj0021753
Score 2.31381
Snippet Human age estimation from facial images has become an active research topic in computer vision field because of various real-world applications. Temporal...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 9189
SubjectTerms Artificial Intelligence
Computational Intelligence
Control
Data Analytics and Machine Learning
Engineering
Mathematical Logic and Foundations
Mechatronics
Robotics
Title Discriminative aging subspace learning for age estimation
URI https://link.springer.com/article/10.1007/s00500-022-07333-z
Volume 26
WOSCitedRecordID wos000825170900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Online Journals
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5s9aAHq1WxPkoO3jSw3XeOohZBKIIPeluSbCK91NKtHvrrnUmziwUR9LzDsswm33zDzHwDcJEOlMI4qrmVmKLEUSh5HlnDA6FInQWDrpJu2UQ2GuXjsXj0Q2FV3e1elyQdUjfDbiRVEnDqPqdFgxFftmAzIbUZytGfXps0y2tPIhFA7ogB14_K_PyO9XC0Xgt1IWbY-d_H7cGup5TsenUG9mHDTLvQqdc1MH97u7DzTXvwAMTthBCDOmEI8ZjbVsQqxBHMog3z2yTeGJJafGYYqXGsxhwP4WV493xzz_0eBa6Rnix4GmbaIA0KDMJTbBOjEx1KZFrSCCQMOkYvJVQxJYPIhLJMTDaweSRtaq2w0RG0p-9TcwwsTY2SuZK2VCJGmBdSK1XagZaYGqk46MFl7c5itpLLKBphZOejAn1UOB8Vyx5c1d4s_NWpfjE_-Zv5KWyH7odQQ9gZtBfzD3MOW_pzManmfWg9ZLzvTs4X3WG9Tg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB20CurBalWsnzl408B2v3MUtVSsRbBKbyFJk9JLlW710F_vJJstFkTQ8w7LMpvMvGFm3gO4SFtSYh5V1AgsUeIoFDSPjKYBk5adBZOuFE5sIuv18sGAPfmlsKKadq9aki5SL5bdLFVJQO30uRUajOh8FdZiK7Nja_Tn10WZ5bknEQggdsSE61dlfn7Hcjpa7oW6FNOu_-_jdmDbQ0pyXZ6BXVjRkwbUK7kG4m9vA7a-cQ_uAbsd24hhJ2FsxCNOrYgUGEewitbEq0mMCIJafKaJZeMo1xz34aV917_pUK-jQBXCkxlNw0xphEGBxvAUm0SrRIUCkZbQDAGDitFLie2YWoNIh2KY6Kxl8kiY1BhmogOoTd4m-hBImmopcinMULIYwzwTSsqhaSmBpZGMgyZcVu7k7yVdBl8QIzsfcfQRdz7i8yZcVd7k_uoUv5gf_c38HDY6_ccu7973Ho5hM3Q_xw6HnUBtNv3Qp7CuPmfjYnrmzs8XUqm_Yg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60iujBalWszxy8aeh2X909irUoSim-6C0k2UR6WUu7euivd5LNlhZEEM87LMu3ycw3zMw3ABdxWwiMo5JqjilKGPicJoFW1EuFUWfBoCu4XTbR6feT4TAdLEzx2273qiRZzjQYlaa8aI0z3ZoPvhnZEo-aTnSzdDCgs1VYCzGTMU1dT89v85TL6VAiKUAeicHXjc38_I7l0LRcF7Xhplf__4fuwLajmuS6PBu7sKLyBtSrNQ7E3eoGbC1oEu5B2h0ZT2I6ZIwnJHaLEZmif8HsWhG3ZeKdINnFZ4oYlY5y_HEfXnu3Lzd31O1XoBJpS0FjvyMV0iNPodsKdaRkJH2ODIyrFImEDBGxyFRSjUGgfJ5FqtPWScB1rHWqgwOo5R-5OgQSx0rwRHCdiTRE959yKUSm25JjyiRCrwmXFbRsXMposLlgssWIIUbMYsRmTbiqkGXuSk1_MT_6m_k5bAy6PfZ43384hk3f_hvTM3YCtWLyqU5hXX4Vo-nkzB6lbyqayEY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discriminative+aging+subspace+learning+for+age+estimation&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Sawant%2C+Manisha&rft.au=Bhurchandi%2C+Kishor+M.&rft.date=2022-09-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=26&rft.issue=18&rft.spage=9189&rft.epage=9198&rft_id=info:doi/10.1007%2Fs00500-022-07333-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_022_07333_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon