MLP-optimized arc-PCF surface plasmon resonance sensor for refractive index detection
This study presents a refractive index (RI) sensor utilizing an arc-side-polished photonic crystal fiber integrated with surface plasmon resonance (PCF-SPR) architecture, along with a Multi-layer Perceptron (MLP)-genetic algorithm (GA) optimization framework for performance enhancement. The MLP mode...
Gespeichert in:
| Veröffentlicht in: | Optics communications Jg. 599; S. 132603 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.01.2026
|
| Schlagworte: | |
| ISSN: | 0030-4018 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study presents a refractive index (RI) sensor utilizing an arc-side-polished photonic crystal fiber integrated with surface plasmon resonance (PCF-SPR) architecture, along with a Multi-layer Perceptron (MLP)-genetic algorithm (GA) optimization framework for performance enhancement. The MLP model, trained using finite element simulation datasets, accurately predicts sensitivity based on five key structural parameters, while the GA identifies optimal parameter combinations. The optimized sensor demonstrates 7,387 nm/RIU peak sensitivity within the 1.33-1.37 RI range, achieving merely 0.176% prediction error and 5.53% improvement over conventional approaches. Extended evaluation across 1.30-1.40 RI range reveals outstanding performance with 22,200 nm/RIU peak sensitivity. Both univariate analysis and SHAP interpretation confirm the physical soundness of the optimization strategy. This approach establishes an effective paradigm for multi-parameter optimization of high-performance optical fiber sensors.
•A new arc-side-polished PCF-SPR sensor is proposed.•MLP is used to predict sensitivity from structural parameters.•GA optimization improves sensitivity from 7000 to 7387 nm/RIU.•Peak sensitivity of 22,200 nm/RIU in RI = 1.30–1.40.•SHAP analysis reveals the influence of key parameters. |
|---|---|
| AbstractList | This study presents a refractive index (RI) sensor utilizing an arc-side-polished photonic crystal fiber integrated with surface plasmon resonance (PCF-SPR) architecture, along with a Multi-layer Perceptron (MLP)-genetic algorithm (GA) optimization framework for performance enhancement. The MLP model, trained using finite element simulation datasets, accurately predicts sensitivity based on five key structural parameters, while the GA identifies optimal parameter combinations. The optimized sensor demonstrates 7,387 nm/RIU peak sensitivity within the 1.33-1.37 RI range, achieving merely 0.176% prediction error and 5.53% improvement over conventional approaches. Extended evaluation across 1.30-1.40 RI range reveals outstanding performance with 22,200 nm/RIU peak sensitivity. Both univariate analysis and SHAP interpretation confirm the physical soundness of the optimization strategy. This approach establishes an effective paradigm for multi-parameter optimization of high-performance optical fiber sensors.
•A new arc-side-polished PCF-SPR sensor is proposed.•MLP is used to predict sensitivity from structural parameters.•GA optimization improves sensitivity from 7000 to 7387 nm/RIU.•Peak sensitivity of 22,200 nm/RIU in RI = 1.30–1.40.•SHAP analysis reveals the influence of key parameters. |
| ArticleNumber | 132603 |
| Author | Zhang, Weihua Ma, Jing Li, Pengxiang Wang, Hao Tong, Zhengrong |
| Author_xml | – sequence: 1 givenname: Pengxiang surname: Li fullname: Li, Pengxiang – sequence: 2 givenname: Hao surname: Wang fullname: Wang, Hao email: wang_hao3749@163.com – sequence: 3 givenname: Zhengrong surname: Tong fullname: Tong, Zhengrong – sequence: 4 givenname: Weihua surname: Zhang fullname: Zhang, Weihua – sequence: 5 givenname: Jing surname: Ma fullname: Ma, Jing |
| BookMark | eNp9kMFOwzAQRH0oEm3hDzjkBxJ2kzhxLkioooBURA_0bLn2RnLV2JUdKuDrcRXOHFarXWlGM2_BZs47YuwOoUDA5v5Q-NOo_VCUUPICq7KBasbmABXkNaC4ZosYDwCAdSXmbPe22eZJYQf7QyZTQefb1TqLn6FXmrLTUcXBuyxQ9E659Inkog9ZnyZQH5Qe7Zky6wx9ZYZGSrd3N-yqV8dIt397yXbrp4_VS755f35dPW5yjW055nWDpiVsm0pxVD22CFxDzXFPHDhHVICGun2NRnSt6hqhQZi-MZ02QhBVS1ZPvjr4GFMeeQp2UOFbIsgLDnmQEw55wSEnHEn2MMkoZTtbCjJqS6mdsSEVkMbb_w1-AeGpbyQ |
| Cites_doi | 10.1007/s11082-024-07179-9 10.1016/j.optcom.2022.129204 10.1080/10408398.2021.1958745 10.1016/j.optcom.2024.130810 10.1016/j.yofte.2024.103801 10.1109/JPHOT.2022.3166822 10.1364/OE.521152 10.1002/mop.33820 10.1016/j.rinp.2023.106365 10.1016/j.optcom.2020.125544 10.1007/s11082-023-05149-1 10.1038/s41598-024-55817-9 10.1016/j.optcom.2020.125496 10.1016/j.yofte.2022.103030 10.1007/s11468-023-02099-y 10.1109/JSEN.2022.3191042 10.1016/j.rinp.2022.105943 10.1088/1402-4896/ad7fa0 10.1007/s11468-023-01825-w 10.1109/JSEN.2024.3358173 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.optcom.2025.132603 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| ExternalDocumentID | 10_1016_j_optcom_2025_132603 S0030401825011319 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9DU 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABDPE ABFNM ABJNI ABMAC ABNEU ABWVN ABXDB ABXRA ACDAQ ACFVG ACGFS ACLOT ACNCT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADIYS ADMUD ADNMO AEBSH AEIPS AEKER AENEX AETEA AEUPX AEZYN AFFNX AFJKZ AFPUW AFRZQ AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LY7 M38 M41 MAGPM MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SSZ T5K TN5 WUQ XPP ZMT ZY4 ~02 ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c172t-461d7e1763a51af17105c0451be505511a01de9b41d897a968c08df6d9cd88ee3 |
| ISSN | 0030-4018 |
| IngestDate | Thu Nov 27 00:49:56 EST 2025 Wed Dec 10 14:25:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Photonic crystal fiber Optical fiber sensors Surface plasmon resonance Multi-layer perception Genetic algorithm optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c172t-461d7e1763a51af17105c0451be505511a01de9b41d897a968c08df6d9cd88ee3 |
| ParticipantIDs | crossref_primary_10_1016_j_optcom_2025_132603 elsevier_sciencedirect_doi_10_1016_j_optcom_2025_132603 |
| PublicationCentury | 2000 |
| PublicationDate | January 2026 2026-01-00 |
| PublicationDateYYYYMMDD | 2026-01-01 |
| PublicationDate_xml | – month: 01 year: 2026 text: January 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Optics communications |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yang, Liu, Wang, Lv, Wang, Yi, Liu, Chu, Liu (b19) 2025 Shafkat (b25) 2020; 28 Bai, Yin, Li, Jing, Chen, Zhang, Shao (b16) 2023; 530 Ehyaee, Rahmati, Bosaghzadeh, Olyaee (b13) 2024; 32 Kaziz, Echouchene, Gazzah (b12) 2024; 14 Kumar, Raghuwanshi, Kumar (b2) 2022; 22 Jain, Choudhary, Kumar (b22) 2022; 73 Liu, Wang, Wang, Su, Yang, Lv, Fu, Li, Liu, Sun (b11) 2020; 464 Ibrahimi, Kumar, Pakhira (b20) 2023; 18 Ravindran, Kumar, R. S, M. CA, N. Thirunavookarasu, S. CK (b4) 2023; 63 Hu, Li, Li, Zhao, Yin, Li, Wang, Zhang, Pei, A (b21) 2024; 19 Guo, Sang, Yang, Wang (b9) 2024 Liu, Li (b7) 2024; 66 Dwivedi, Singh, Sharma, Sharma (b23) 2024; 85 Zhao, Yuan, Qu, Yan, Wang, Sang (b5) 2024; 56 Wang, Li, Shao, Zhang, Li, Sun, Tao, Deng, Sun (b17) 2020; 464 Meng, Wang, Fang (b6) 2022; 14 Wu, Chen, Chen, Yin, Wang (b18) 2023; 55 Liu, Liu, Wang, Lv, Lv, Yang, An, Yi, Liu, Hu (b3) 2023; 47 Li, Li, Du (b15) 2024 Liu, Dong, Liu, Hou, Wu, Yan (b8) 2024; 99 Hossain, Hossain, Islam, Sakib, Islam, Hossain, Hossain, Hosen, Cho (b1) 2020; 18 Sardar, Faisal (b14) 2024; 24 Zhang, Wang (b10) 2024; 569 Yin, Jing, Bai, Wang, Liu, Gao, Li (b24) 2022; 41 Zhao (10.1016/j.optcom.2025.132603_b5) 2024; 56 Guo (10.1016/j.optcom.2025.132603_b9) 2024 Meng (10.1016/j.optcom.2025.132603_b6) 2022; 14 Zhang (10.1016/j.optcom.2025.132603_b10) 2024; 569 Li (10.1016/j.optcom.2025.132603_b15) 2024 Ravindran (10.1016/j.optcom.2025.132603_b4) 2023; 63 Wu (10.1016/j.optcom.2025.132603_b18) 2023; 55 Liu (10.1016/j.optcom.2025.132603_b8) 2024; 99 Bai (10.1016/j.optcom.2025.132603_b16) 2023; 530 Sardar (10.1016/j.optcom.2025.132603_b14) 2024; 24 Liu (10.1016/j.optcom.2025.132603_b7) 2024; 66 Hu (10.1016/j.optcom.2025.132603_b21) 2024; 19 Ibrahimi (10.1016/j.optcom.2025.132603_b20) 2023; 18 Hossain (10.1016/j.optcom.2025.132603_b1) 2020; 18 Yin (10.1016/j.optcom.2025.132603_b24) 2022; 41 Jain (10.1016/j.optcom.2025.132603_b22) 2022; 73 Wang (10.1016/j.optcom.2025.132603_b17) 2020; 464 Kaziz (10.1016/j.optcom.2025.132603_b12) 2024; 14 Shafkat (10.1016/j.optcom.2025.132603_b25) 2020; 28 Yang (10.1016/j.optcom.2025.132603_b19) 2025 Liu (10.1016/j.optcom.2025.132603_b11) 2020; 464 Kumar (10.1016/j.optcom.2025.132603_b2) 2022; 22 Ehyaee (10.1016/j.optcom.2025.132603_b13) 2024; 32 Dwivedi (10.1016/j.optcom.2025.132603_b23) 2024; 85 Liu (10.1016/j.optcom.2025.132603_b3) 2023; 47 |
| References_xml | – volume: 73 year: 2022 ident: b22 article-title: Photonic crystal fiber-based SPR sensor for broad range of refractive index sensing applications publication-title: Opt. Fiber Technol. – volume: 47 year: 2023 ident: b3 article-title: Surface plasmon resonance sensor composed of microstructured optical fibers for monitoring of external and internal environments in biological and environmental sensing publication-title: Results Phys. – volume: 24 start-page: 9843 year: 2024 end-page: 9854 ident: b14 article-title: Dual-core dual-polished PCF-SPR sensor for cancer cell detection publication-title: IEEE Sensors J. – volume: 66 year: 2024 ident: b7 article-title: A high magnetic field sensitivity PCF-SPR sensor working in the near-infrared wavelength band publication-title: Microw. Opt. Technol. Lett. – volume: 85 year: 2024 ident: b23 article-title: On the application of explainable AI in optimizing the performance and design of fiber optic SPR sensor publication-title: Opt. Fiber Technol. – volume: 18 start-page: 995 year: 2023 end-page: 1006 ident: b20 article-title: Enhance the design and performance analysis of a highly sensitive twin-core PCF SPR biosensor with gold plating for the early detection of cancer cells publication-title: Plasmonics – volume: 55 start-page: 858 year: 2023 ident: b18 article-title: Highly sensitive refractive index sensor based on TiO publication-title: Opt. Quantum Electron. – volume: 56 start-page: 1233 year: 2024 ident: b5 article-title: A novel D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance effect publication-title: Opt. Quantum Electron. – volume: 464 year: 2020 ident: b11 article-title: Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings publication-title: Opt. Commun. – volume: 19 start-page: 1667 year: 2024 end-page: 1678 ident: b21 article-title: Dual-core two-parameter of RI and temperature photonic crystal fiber sensor based on the SPR effect publication-title: Plasmonics – volume: 530 year: 2023 ident: b16 article-title: Enhancement of spr effect and sensing characteristics in D-shaped polished grapefruit microstructured optical fiber with silver film publication-title: Opt. Commun. – year: 2024 ident: b15 article-title: Near-infrared PCF sensor with ultra-high sensitivity detection based on surface plasmon resonance publication-title: J. Lightwave Technol. – volume: 41 year: 2022 ident: b24 article-title: A broadband SPR dual-channel sensor based on a PCF coated with sodium-silver for refractive index and temperature measurement publication-title: Results Phys. – volume: 14 start-page: 7837 year: 2024 ident: b12 article-title: Optimizing PCF-SPR sensor design through taguchi approach, machine learning, and genetic algorithms publication-title: Sci. Rep. – volume: 22 start-page: 15661 year: 2022 end-page: 15672 ident: b2 article-title: Recent advances in carbon nanomaterials based SPR sensor for biomolecules and gas detection—A review publication-title: IEEE Sensors J. – volume: 464 year: 2020 ident: b17 article-title: Enhancement of properties of high-density material coated glass monocapillary X-ray condenser based on atomic layer deposition publication-title: Opt. Commun. – start-page: 1 year: 2025 end-page: 11 ident: b19 article-title: Annular bore array H-Type PCF-SPR Sensor with High Sensitivity publication-title: Plasmonics – volume: 18 year: 2020 ident: b1 article-title: Numerical development of high performance quasi D-shape PCF-SPR biosensor: An external sensing approach employing gold publication-title: Results Phys. – volume: 99 year: 2024 ident: b8 article-title: Germanium doped D-shaped PCF-SPR methane high sensitivity sensor publication-title: Phys. Scr. – start-page: 1 year: 2024 end-page: 10 ident: b9 article-title: Dual-polarization SPR sensor of U-shaped photonic crystal fiber coated with Au-TiO publication-title: Plasmonics – volume: 32 start-page: 13369 year: 2024 end-page: 13383 ident: b13 article-title: Machine learning-enhanced surface plasmon resonance based photonic crystal fiber sensor publication-title: Opt. Express – volume: 14 start-page: 1 year: 2022 end-page: 5 ident: b6 article-title: Research on D-shape open-loop PCF temperature refractive index sensor based on SPR effect publication-title: IEEE Photonics J. – volume: 569 year: 2024 ident: b10 article-title: A PCF-SPR sensor for dual-polarization and wide refractive index detection range publication-title: Opt. Commun. – volume: 63 start-page: 1055 year: 2023 end-page: 1077 ident: b4 article-title: Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: A review publication-title: Crit. Rev. Food Sci. Nutr. – volume: 28 year: 2020 ident: b25 article-title: Analysis of a gold coated plasmonic sensor based on a duplex core photonic crystal fiber publication-title: Sens. Bio-Sensing Res. – volume: 56 start-page: 1233 issue: 7 year: 2024 ident: 10.1016/j.optcom.2025.132603_b5 article-title: A novel D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance effect publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-024-07179-9 – volume: 530 year: 2023 ident: 10.1016/j.optcom.2025.132603_b16 article-title: Enhancement of spr effect and sensing characteristics in D-shaped polished grapefruit microstructured optical fiber with silver film publication-title: Opt. Commun. doi: 10.1016/j.optcom.2022.129204 – volume: 63 start-page: 1055 issue: 8 year: 2023 ident: 10.1016/j.optcom.2025.132603_b4 article-title: Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: A review publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2021.1958745 – volume: 569 year: 2024 ident: 10.1016/j.optcom.2025.132603_b10 article-title: A PCF-SPR sensor for dual-polarization and wide refractive index detection range publication-title: Opt. Commun. doi: 10.1016/j.optcom.2024.130810 – volume: 85 year: 2024 ident: 10.1016/j.optcom.2025.132603_b23 article-title: On the application of explainable AI in optimizing the performance and design of fiber optic SPR sensor publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2024.103801 – volume: 14 start-page: 1 issue: 3 year: 2022 ident: 10.1016/j.optcom.2025.132603_b6 article-title: Research on D-shape open-loop PCF temperature refractive index sensor based on SPR effect publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2022.3166822 – volume: 32 start-page: 13369 issue: 8 year: 2024 ident: 10.1016/j.optcom.2025.132603_b13 article-title: Machine learning-enhanced surface plasmon resonance based photonic crystal fiber sensor publication-title: Opt. Express doi: 10.1364/OE.521152 – volume: 66 issue: 1 year: 2024 ident: 10.1016/j.optcom.2025.132603_b7 article-title: A high magnetic field sensitivity PCF-SPR sensor working in the near-infrared wavelength band publication-title: Microw. Opt. Technol. Lett. doi: 10.1002/mop.33820 – start-page: 1 year: 2024 ident: 10.1016/j.optcom.2025.132603_b9 article-title: Dual-polarization SPR sensor of U-shaped photonic crystal fiber coated with Au-TiO2 publication-title: Plasmonics – volume: 47 year: 2023 ident: 10.1016/j.optcom.2025.132603_b3 article-title: Surface plasmon resonance sensor composed of microstructured optical fibers for monitoring of external and internal environments in biological and environmental sensing publication-title: Results Phys. doi: 10.1016/j.rinp.2023.106365 – volume: 28 year: 2020 ident: 10.1016/j.optcom.2025.132603_b25 article-title: Analysis of a gold coated plasmonic sensor based on a duplex core photonic crystal fiber publication-title: Sens. Bio-Sensing Res. – volume: 464 year: 2020 ident: 10.1016/j.optcom.2025.132603_b17 article-title: Enhancement of properties of high-density material coated glass monocapillary X-ray condenser based on atomic layer deposition publication-title: Opt. Commun. doi: 10.1016/j.optcom.2020.125544 – volume: 55 start-page: 858 issue: 10 year: 2023 ident: 10.1016/j.optcom.2025.132603_b18 article-title: Highly sensitive refractive index sensor based on TiO2/Ag films coated D-type photonic crystal fibers publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-023-05149-1 – volume: 14 start-page: 7837 issue: 1 year: 2024 ident: 10.1016/j.optcom.2025.132603_b12 article-title: Optimizing PCF-SPR sensor design through taguchi approach, machine learning, and genetic algorithms publication-title: Sci. Rep. doi: 10.1038/s41598-024-55817-9 – volume: 464 year: 2020 ident: 10.1016/j.optcom.2025.132603_b11 article-title: Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings publication-title: Opt. Commun. doi: 10.1016/j.optcom.2020.125496 – volume: 73 year: 2022 ident: 10.1016/j.optcom.2025.132603_b22 article-title: Photonic crystal fiber-based SPR sensor for broad range of refractive index sensing applications publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2022.103030 – volume: 19 start-page: 1667 issue: 3 year: 2024 ident: 10.1016/j.optcom.2025.132603_b21 article-title: Dual-core two-parameter of RI and temperature photonic crystal fiber sensor based on the SPR effect publication-title: Plasmonics doi: 10.1007/s11468-023-02099-y – volume: 22 start-page: 15661 issue: 16 year: 2022 ident: 10.1016/j.optcom.2025.132603_b2 article-title: Recent advances in carbon nanomaterials based SPR sensor for biomolecules and gas detection—A review publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2022.3191042 – volume: 18 year: 2020 ident: 10.1016/j.optcom.2025.132603_b1 article-title: Numerical development of high performance quasi D-shape PCF-SPR biosensor: An external sensing approach employing gold publication-title: Results Phys. – volume: 41 year: 2022 ident: 10.1016/j.optcom.2025.132603_b24 article-title: A broadband SPR dual-channel sensor based on a PCF coated with sodium-silver for refractive index and temperature measurement publication-title: Results Phys. doi: 10.1016/j.rinp.2022.105943 – start-page: 1 year: 2025 ident: 10.1016/j.optcom.2025.132603_b19 article-title: Annular bore array H-Type PCF-SPR Sensor with High Sensitivity publication-title: Plasmonics – volume: 99 issue: 11 year: 2024 ident: 10.1016/j.optcom.2025.132603_b8 article-title: Germanium doped D-shaped PCF-SPR methane high sensitivity sensor publication-title: Phys. Scr. doi: 10.1088/1402-4896/ad7fa0 – volume: 18 start-page: 995 issue: 3 year: 2023 ident: 10.1016/j.optcom.2025.132603_b20 article-title: Enhance the design and performance analysis of a highly sensitive twin-core PCF SPR biosensor with gold plating for the early detection of cancer cells publication-title: Plasmonics doi: 10.1007/s11468-023-01825-w – volume: 24 start-page: 9843 issue: 7 year: 2024 ident: 10.1016/j.optcom.2025.132603_b14 article-title: Dual-core dual-polished PCF-SPR sensor for cancer cell detection publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2024.3358173 – year: 2024 ident: 10.1016/j.optcom.2025.132603_b15 article-title: Near-infrared PCF sensor with ultra-high sensitivity detection based on surface plasmon resonance publication-title: J. Lightwave Technol. |
| SSID | ssj0001438 |
| Score | 2.4713638 |
| Snippet | This study presents a refractive index (RI) sensor utilizing an arc-side-polished photonic crystal fiber integrated with surface plasmon resonance (PCF-SPR)... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 132603 |
| SubjectTerms | Genetic algorithm optimization Multi-layer perception Optical fiber sensors Photonic crystal fiber Surface plasmon resonance |
| Title | MLP-optimized arc-PCF surface plasmon resonance sensor for refractive index detection |
| URI | https://dx.doi.org/10.1016/j.optcom.2025.132603 |
| Volume | 599 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0030-4018 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001438 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ja9tAFB5K0kIvpStNN-bQm1HwRNYsxxAS0pKmhibU9CLGmlHiQCUj2cH01_ebxZJbl9IWehFm0Ob3zbz53tNbCHmLHUKzlMsEk6eEgeLWXDoySTFNS6WFLbnQvtmEOD-Xk4kax3aprW8nIKpKrlZq_l-hxhjAdqmzfwF3d1MM4DdAxxGw4_hHwH84Gyc1FMHX2TeQSfy5ZHx0MmiXTamxhudgy3iVAazsuvLpAi0M2brx4YbYLX3S1K2rJGLsamDswodqVZsc9uPcl3YuNlNLOmZ-NgtRv9XVChPvqvfXB51yquverx2Gvlzj5Kbuz-182J_t7HqpN_0SBz_7JbYTZoICToeYEVHlRgWchRZJW8o8-BVu9iEzF9mDh2T7MJ75MO03ry6k8JP_yIs7g9MxlrpKsLsHIlNQ1ruH744n77v92TV8D8U6w6usEyp91N_2s35NWDZIyMVD8iBaD_QwoP6I3LHVY3LPR_EW7RNy-QP2NGJPI_Y0Yk877GnAngJ72mNPPfa0w_4puTw5vjg6TWLfjKQAHV0kI86MsAw7h86YLhlIZFa4OkJTC74Lhq2HzFg1HTEjldCKy2IoTcmNKoyU1qbPyE5VV_Y5oQILGQYll9ZRv5Qr1x5BKquMo7IjvkeStXDyeSiPkq_jBm_yIMzcCTMPwtwjYi3BPFK8QN1ygP7bK1_885Uvyf1-fr4iO4tmaV-Tu8XtYtY2b-Ls-A77UXcp |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLP-optimized+arc-PCF+surface+plasmon+resonance+sensor+for+refractive+index+detection&rft.jtitle=Optics+communications&rft.au=Li%2C+Pengxiang&rft.au=Wang%2C+Hao&rft.au=Tong%2C+Zhengrong&rft.au=Zhang%2C+Weihua&rft.date=2026-01-01&rft.pub=Elsevier+B.V&rft.issn=0030-4018&rft.volume=599&rft_id=info:doi/10.1016%2Fj.optcom.2025.132603&rft.externalDocID=S0030401825011319 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4018&client=summon |