MLP-optimized arc-PCF surface plasmon resonance sensor for refractive index detection

This study presents a refractive index (RI) sensor utilizing an arc-side-polished photonic crystal fiber integrated with surface plasmon resonance (PCF-SPR) architecture, along with a Multi-layer Perceptron (MLP)-genetic algorithm (GA) optimization framework for performance enhancement. The MLP mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics communications Jg. 599; S. 132603
Hauptverfasser: Li, Pengxiang, Wang, Hao, Tong, Zhengrong, Zhang, Weihua, Ma, Jing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.01.2026
Schlagworte:
ISSN:0030-4018
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study presents a refractive index (RI) sensor utilizing an arc-side-polished photonic crystal fiber integrated with surface plasmon resonance (PCF-SPR) architecture, along with a Multi-layer Perceptron (MLP)-genetic algorithm (GA) optimization framework for performance enhancement. The MLP model, trained using finite element simulation datasets, accurately predicts sensitivity based on five key structural parameters, while the GA identifies optimal parameter combinations. The optimized sensor demonstrates 7,387 nm/RIU peak sensitivity within the 1.33-1.37 RI range, achieving merely 0.176% prediction error and 5.53% improvement over conventional approaches. Extended evaluation across 1.30-1.40 RI range reveals outstanding performance with 22,200 nm/RIU peak sensitivity. Both univariate analysis and SHAP interpretation confirm the physical soundness of the optimization strategy. This approach establishes an effective paradigm for multi-parameter optimization of high-performance optical fiber sensors. •A new arc-side-polished PCF-SPR sensor is proposed.•MLP is used to predict sensitivity from structural parameters.•GA optimization improves sensitivity from 7000 to 7387 nm/RIU.•Peak sensitivity of 22,200 nm/RIU in RI = 1.30–1.40.•SHAP analysis reveals the influence of key parameters.
AbstractList This study presents a refractive index (RI) sensor utilizing an arc-side-polished photonic crystal fiber integrated with surface plasmon resonance (PCF-SPR) architecture, along with a Multi-layer Perceptron (MLP)-genetic algorithm (GA) optimization framework for performance enhancement. The MLP model, trained using finite element simulation datasets, accurately predicts sensitivity based on five key structural parameters, while the GA identifies optimal parameter combinations. The optimized sensor demonstrates 7,387 nm/RIU peak sensitivity within the 1.33-1.37 RI range, achieving merely 0.176% prediction error and 5.53% improvement over conventional approaches. Extended evaluation across 1.30-1.40 RI range reveals outstanding performance with 22,200 nm/RIU peak sensitivity. Both univariate analysis and SHAP interpretation confirm the physical soundness of the optimization strategy. This approach establishes an effective paradigm for multi-parameter optimization of high-performance optical fiber sensors. •A new arc-side-polished PCF-SPR sensor is proposed.•MLP is used to predict sensitivity from structural parameters.•GA optimization improves sensitivity from 7000 to 7387 nm/RIU.•Peak sensitivity of 22,200 nm/RIU in RI = 1.30–1.40.•SHAP analysis reveals the influence of key parameters.
ArticleNumber 132603
Author Zhang, Weihua
Ma, Jing
Li, Pengxiang
Wang, Hao
Tong, Zhengrong
Author_xml – sequence: 1
  givenname: Pengxiang
  surname: Li
  fullname: Li, Pengxiang
– sequence: 2
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  email: wang_hao3749@163.com
– sequence: 3
  givenname: Zhengrong
  surname: Tong
  fullname: Tong, Zhengrong
– sequence: 4
  givenname: Weihua
  surname: Zhang
  fullname: Zhang, Weihua
– sequence: 5
  givenname: Jing
  surname: Ma
  fullname: Ma, Jing
BookMark eNp9kMFOwzAQRH0oEm3hDzjkBxJ2kzhxLkioooBURA_0bLn2RnLV2JUdKuDrcRXOHFarXWlGM2_BZs47YuwOoUDA5v5Q-NOo_VCUUPICq7KBasbmABXkNaC4ZosYDwCAdSXmbPe22eZJYQf7QyZTQefb1TqLn6FXmrLTUcXBuyxQ9E659Inkog9ZnyZQH5Qe7Zky6wx9ZYZGSrd3N-yqV8dIt397yXbrp4_VS755f35dPW5yjW055nWDpiVsm0pxVD22CFxDzXFPHDhHVICGun2NRnSt6hqhQZi-MZ02QhBVS1ZPvjr4GFMeeQp2UOFbIsgLDnmQEw55wSEnHEn2MMkoZTtbCjJqS6mdsSEVkMbb_w1-AeGpbyQ
Cites_doi 10.1007/s11082-024-07179-9
10.1016/j.optcom.2022.129204
10.1080/10408398.2021.1958745
10.1016/j.optcom.2024.130810
10.1016/j.yofte.2024.103801
10.1109/JPHOT.2022.3166822
10.1364/OE.521152
10.1002/mop.33820
10.1016/j.rinp.2023.106365
10.1016/j.optcom.2020.125544
10.1007/s11082-023-05149-1
10.1038/s41598-024-55817-9
10.1016/j.optcom.2020.125496
10.1016/j.yofte.2022.103030
10.1007/s11468-023-02099-y
10.1109/JSEN.2022.3191042
10.1016/j.rinp.2022.105943
10.1088/1402-4896/ad7fa0
10.1007/s11468-023-01825-w
10.1109/JSEN.2024.3358173
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.optcom.2025.132603
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_optcom_2025_132603
S0030401825011319
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9DU
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ABXRA
ACDAQ
ACFVG
ACGFS
ACLOT
ACNCT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADIYS
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AETEA
AEUPX
AEZYN
AFFNX
AFJKZ
AFPUW
AFRZQ
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LY7
M38
M41
MAGPM
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~02
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c172t-461d7e1763a51af17105c0451be505511a01de9b41d897a968c08df6d9cd88ee3
ISSN 0030-4018
IngestDate Thu Nov 27 00:49:56 EST 2025
Wed Dec 10 14:25:58 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Photonic crystal fiber
Optical fiber sensors
Surface plasmon resonance
Multi-layer perception
Genetic algorithm optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c172t-461d7e1763a51af17105c0451be505511a01de9b41d897a968c08df6d9cd88ee3
ParticipantIDs crossref_primary_10_1016_j_optcom_2025_132603
elsevier_sciencedirect_doi_10_1016_j_optcom_2025_132603
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Optics communications
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Liu, Wang, Lv, Wang, Yi, Liu, Chu, Liu (b19) 2025
Shafkat (b25) 2020; 28
Bai, Yin, Li, Jing, Chen, Zhang, Shao (b16) 2023; 530
Ehyaee, Rahmati, Bosaghzadeh, Olyaee (b13) 2024; 32
Kaziz, Echouchene, Gazzah (b12) 2024; 14
Kumar, Raghuwanshi, Kumar (b2) 2022; 22
Jain, Choudhary, Kumar (b22) 2022; 73
Liu, Wang, Wang, Su, Yang, Lv, Fu, Li, Liu, Sun (b11) 2020; 464
Ibrahimi, Kumar, Pakhira (b20) 2023; 18
Ravindran, Kumar, R. S, M. CA, N. Thirunavookarasu, S. CK (b4) 2023; 63
Hu, Li, Li, Zhao, Yin, Li, Wang, Zhang, Pei, A (b21) 2024; 19
Guo, Sang, Yang, Wang (b9) 2024
Liu, Li (b7) 2024; 66
Dwivedi, Singh, Sharma, Sharma (b23) 2024; 85
Zhao, Yuan, Qu, Yan, Wang, Sang (b5) 2024; 56
Wang, Li, Shao, Zhang, Li, Sun, Tao, Deng, Sun (b17) 2020; 464
Meng, Wang, Fang (b6) 2022; 14
Wu, Chen, Chen, Yin, Wang (b18) 2023; 55
Liu, Liu, Wang, Lv, Lv, Yang, An, Yi, Liu, Hu (b3) 2023; 47
Li, Li, Du (b15) 2024
Liu, Dong, Liu, Hou, Wu, Yan (b8) 2024; 99
Hossain, Hossain, Islam, Sakib, Islam, Hossain, Hossain, Hosen, Cho (b1) 2020; 18
Sardar, Faisal (b14) 2024; 24
Zhang, Wang (b10) 2024; 569
Yin, Jing, Bai, Wang, Liu, Gao, Li (b24) 2022; 41
Zhao (10.1016/j.optcom.2025.132603_b5) 2024; 56
Guo (10.1016/j.optcom.2025.132603_b9) 2024
Meng (10.1016/j.optcom.2025.132603_b6) 2022; 14
Zhang (10.1016/j.optcom.2025.132603_b10) 2024; 569
Li (10.1016/j.optcom.2025.132603_b15) 2024
Ravindran (10.1016/j.optcom.2025.132603_b4) 2023; 63
Wu (10.1016/j.optcom.2025.132603_b18) 2023; 55
Liu (10.1016/j.optcom.2025.132603_b8) 2024; 99
Bai (10.1016/j.optcom.2025.132603_b16) 2023; 530
Sardar (10.1016/j.optcom.2025.132603_b14) 2024; 24
Liu (10.1016/j.optcom.2025.132603_b7) 2024; 66
Hu (10.1016/j.optcom.2025.132603_b21) 2024; 19
Ibrahimi (10.1016/j.optcom.2025.132603_b20) 2023; 18
Hossain (10.1016/j.optcom.2025.132603_b1) 2020; 18
Yin (10.1016/j.optcom.2025.132603_b24) 2022; 41
Jain (10.1016/j.optcom.2025.132603_b22) 2022; 73
Wang (10.1016/j.optcom.2025.132603_b17) 2020; 464
Kaziz (10.1016/j.optcom.2025.132603_b12) 2024; 14
Shafkat (10.1016/j.optcom.2025.132603_b25) 2020; 28
Yang (10.1016/j.optcom.2025.132603_b19) 2025
Liu (10.1016/j.optcom.2025.132603_b11) 2020; 464
Kumar (10.1016/j.optcom.2025.132603_b2) 2022; 22
Ehyaee (10.1016/j.optcom.2025.132603_b13) 2024; 32
Dwivedi (10.1016/j.optcom.2025.132603_b23) 2024; 85
Liu (10.1016/j.optcom.2025.132603_b3) 2023; 47
References_xml – volume: 73
  year: 2022
  ident: b22
  article-title: Photonic crystal fiber-based SPR sensor for broad range of refractive index sensing applications
  publication-title: Opt. Fiber Technol.
– volume: 47
  year: 2023
  ident: b3
  article-title: Surface plasmon resonance sensor composed of microstructured optical fibers for monitoring of external and internal environments in biological and environmental sensing
  publication-title: Results Phys.
– volume: 24
  start-page: 9843
  year: 2024
  end-page: 9854
  ident: b14
  article-title: Dual-core dual-polished PCF-SPR sensor for cancer cell detection
  publication-title: IEEE Sensors J.
– volume: 66
  year: 2024
  ident: b7
  article-title: A high magnetic field sensitivity PCF-SPR sensor working in the near-infrared wavelength band
  publication-title: Microw. Opt. Technol. Lett.
– volume: 85
  year: 2024
  ident: b23
  article-title: On the application of explainable AI in optimizing the performance and design of fiber optic SPR sensor
  publication-title: Opt. Fiber Technol.
– volume: 18
  start-page: 995
  year: 2023
  end-page: 1006
  ident: b20
  article-title: Enhance the design and performance analysis of a highly sensitive twin-core PCF SPR biosensor with gold plating for the early detection of cancer cells
  publication-title: Plasmonics
– volume: 55
  start-page: 858
  year: 2023
  ident: b18
  article-title: Highly sensitive refractive index sensor based on TiO
  publication-title: Opt. Quantum Electron.
– volume: 56
  start-page: 1233
  year: 2024
  ident: b5
  article-title: A novel D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance effect
  publication-title: Opt. Quantum Electron.
– volume: 464
  year: 2020
  ident: b11
  article-title: Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings
  publication-title: Opt. Commun.
– volume: 19
  start-page: 1667
  year: 2024
  end-page: 1678
  ident: b21
  article-title: Dual-core two-parameter of RI and temperature photonic crystal fiber sensor based on the SPR effect
  publication-title: Plasmonics
– volume: 530
  year: 2023
  ident: b16
  article-title: Enhancement of spr effect and sensing characteristics in D-shaped polished grapefruit microstructured optical fiber with silver film
  publication-title: Opt. Commun.
– year: 2024
  ident: b15
  article-title: Near-infrared PCF sensor with ultra-high sensitivity detection based on surface plasmon resonance
  publication-title: J. Lightwave Technol.
– volume: 41
  year: 2022
  ident: b24
  article-title: A broadband SPR dual-channel sensor based on a PCF coated with sodium-silver for refractive index and temperature measurement
  publication-title: Results Phys.
– volume: 14
  start-page: 7837
  year: 2024
  ident: b12
  article-title: Optimizing PCF-SPR sensor design through taguchi approach, machine learning, and genetic algorithms
  publication-title: Sci. Rep.
– volume: 22
  start-page: 15661
  year: 2022
  end-page: 15672
  ident: b2
  article-title: Recent advances in carbon nanomaterials based SPR sensor for biomolecules and gas detection—A review
  publication-title: IEEE Sensors J.
– volume: 464
  year: 2020
  ident: b17
  article-title: Enhancement of properties of high-density material coated glass monocapillary X-ray condenser based on atomic layer deposition
  publication-title: Opt. Commun.
– start-page: 1
  year: 2025
  end-page: 11
  ident: b19
  article-title: Annular bore array H-Type PCF-SPR Sensor with High Sensitivity
  publication-title: Plasmonics
– volume: 18
  year: 2020
  ident: b1
  article-title: Numerical development of high performance quasi D-shape PCF-SPR biosensor: An external sensing approach employing gold
  publication-title: Results Phys.
– volume: 99
  year: 2024
  ident: b8
  article-title: Germanium doped D-shaped PCF-SPR methane high sensitivity sensor
  publication-title: Phys. Scr.
– start-page: 1
  year: 2024
  end-page: 10
  ident: b9
  article-title: Dual-polarization SPR sensor of U-shaped photonic crystal fiber coated with Au-TiO
  publication-title: Plasmonics
– volume: 32
  start-page: 13369
  year: 2024
  end-page: 13383
  ident: b13
  article-title: Machine learning-enhanced surface plasmon resonance based photonic crystal fiber sensor
  publication-title: Opt. Express
– volume: 14
  start-page: 1
  year: 2022
  end-page: 5
  ident: b6
  article-title: Research on D-shape open-loop PCF temperature refractive index sensor based on SPR effect
  publication-title: IEEE Photonics J.
– volume: 569
  year: 2024
  ident: b10
  article-title: A PCF-SPR sensor for dual-polarization and wide refractive index detection range
  publication-title: Opt. Commun.
– volume: 63
  start-page: 1055
  year: 2023
  end-page: 1077
  ident: b4
  article-title: Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: A review
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 28
  year: 2020
  ident: b25
  article-title: Analysis of a gold coated plasmonic sensor based on a duplex core photonic crystal fiber
  publication-title: Sens. Bio-Sensing Res.
– volume: 56
  start-page: 1233
  issue: 7
  year: 2024
  ident: 10.1016/j.optcom.2025.132603_b5
  article-title: A novel D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance effect
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-024-07179-9
– volume: 530
  year: 2023
  ident: 10.1016/j.optcom.2025.132603_b16
  article-title: Enhancement of spr effect and sensing characteristics in D-shaped polished grapefruit microstructured optical fiber with silver film
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2022.129204
– volume: 63
  start-page: 1055
  issue: 8
  year: 2023
  ident: 10.1016/j.optcom.2025.132603_b4
  article-title: Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: A review
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2021.1958745
– volume: 569
  year: 2024
  ident: 10.1016/j.optcom.2025.132603_b10
  article-title: A PCF-SPR sensor for dual-polarization and wide refractive index detection range
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2024.130810
– volume: 85
  year: 2024
  ident: 10.1016/j.optcom.2025.132603_b23
  article-title: On the application of explainable AI in optimizing the performance and design of fiber optic SPR sensor
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2024.103801
– volume: 14
  start-page: 1
  issue: 3
  year: 2022
  ident: 10.1016/j.optcom.2025.132603_b6
  article-title: Research on D-shape open-loop PCF temperature refractive index sensor based on SPR effect
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2022.3166822
– volume: 32
  start-page: 13369
  issue: 8
  year: 2024
  ident: 10.1016/j.optcom.2025.132603_b13
  article-title: Machine learning-enhanced surface plasmon resonance based photonic crystal fiber sensor
  publication-title: Opt. Express
  doi: 10.1364/OE.521152
– volume: 66
  issue: 1
  year: 2024
  ident: 10.1016/j.optcom.2025.132603_b7
  article-title: A high magnetic field sensitivity PCF-SPR sensor working in the near-infrared wavelength band
  publication-title: Microw. Opt. Technol. Lett.
  doi: 10.1002/mop.33820
– start-page: 1
  year: 2024
  ident: 10.1016/j.optcom.2025.132603_b9
  article-title: Dual-polarization SPR sensor of U-shaped photonic crystal fiber coated with Au-TiO2
  publication-title: Plasmonics
– volume: 47
  year: 2023
  ident: 10.1016/j.optcom.2025.132603_b3
  article-title: Surface plasmon resonance sensor composed of microstructured optical fibers for monitoring of external and internal environments in biological and environmental sensing
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2023.106365
– volume: 28
  year: 2020
  ident: 10.1016/j.optcom.2025.132603_b25
  article-title: Analysis of a gold coated plasmonic sensor based on a duplex core photonic crystal fiber
  publication-title: Sens. Bio-Sensing Res.
– volume: 464
  year: 2020
  ident: 10.1016/j.optcom.2025.132603_b17
  article-title: Enhancement of properties of high-density material coated glass monocapillary X-ray condenser based on atomic layer deposition
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2020.125544
– volume: 55
  start-page: 858
  issue: 10
  year: 2023
  ident: 10.1016/j.optcom.2025.132603_b18
  article-title: Highly sensitive refractive index sensor based on TiO2/Ag films coated D-type photonic crystal fibers
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-023-05149-1
– volume: 14
  start-page: 7837
  issue: 1
  year: 2024
  ident: 10.1016/j.optcom.2025.132603_b12
  article-title: Optimizing PCF-SPR sensor design through taguchi approach, machine learning, and genetic algorithms
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-55817-9
– volume: 464
  year: 2020
  ident: 10.1016/j.optcom.2025.132603_b11
  article-title: Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2020.125496
– volume: 73
  year: 2022
  ident: 10.1016/j.optcom.2025.132603_b22
  article-title: Photonic crystal fiber-based SPR sensor for broad range of refractive index sensing applications
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2022.103030
– volume: 19
  start-page: 1667
  issue: 3
  year: 2024
  ident: 10.1016/j.optcom.2025.132603_b21
  article-title: Dual-core two-parameter of RI and temperature photonic crystal fiber sensor based on the SPR effect
  publication-title: Plasmonics
  doi: 10.1007/s11468-023-02099-y
– volume: 22
  start-page: 15661
  issue: 16
  year: 2022
  ident: 10.1016/j.optcom.2025.132603_b2
  article-title: Recent advances in carbon nanomaterials based SPR sensor for biomolecules and gas detection—A review
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2022.3191042
– volume: 18
  year: 2020
  ident: 10.1016/j.optcom.2025.132603_b1
  article-title: Numerical development of high performance quasi D-shape PCF-SPR biosensor: An external sensing approach employing gold
  publication-title: Results Phys.
– volume: 41
  year: 2022
  ident: 10.1016/j.optcom.2025.132603_b24
  article-title: A broadband SPR dual-channel sensor based on a PCF coated with sodium-silver for refractive index and temperature measurement
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2022.105943
– start-page: 1
  year: 2025
  ident: 10.1016/j.optcom.2025.132603_b19
  article-title: Annular bore array H-Type PCF-SPR Sensor with High Sensitivity
  publication-title: Plasmonics
– volume: 99
  issue: 11
  year: 2024
  ident: 10.1016/j.optcom.2025.132603_b8
  article-title: Germanium doped D-shaped PCF-SPR methane high sensitivity sensor
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ad7fa0
– volume: 18
  start-page: 995
  issue: 3
  year: 2023
  ident: 10.1016/j.optcom.2025.132603_b20
  article-title: Enhance the design and performance analysis of a highly sensitive twin-core PCF SPR biosensor with gold plating for the early detection of cancer cells
  publication-title: Plasmonics
  doi: 10.1007/s11468-023-01825-w
– volume: 24
  start-page: 9843
  issue: 7
  year: 2024
  ident: 10.1016/j.optcom.2025.132603_b14
  article-title: Dual-core dual-polished PCF-SPR sensor for cancer cell detection
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2024.3358173
– year: 2024
  ident: 10.1016/j.optcom.2025.132603_b15
  article-title: Near-infrared PCF sensor with ultra-high sensitivity detection based on surface plasmon resonance
  publication-title: J. Lightwave Technol.
SSID ssj0001438
Score 2.4713638
Snippet This study presents a refractive index (RI) sensor utilizing an arc-side-polished photonic crystal fiber integrated with surface plasmon resonance (PCF-SPR)...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 132603
SubjectTerms Genetic algorithm optimization
Multi-layer perception
Optical fiber sensors
Photonic crystal fiber
Surface plasmon resonance
Title MLP-optimized arc-PCF surface plasmon resonance sensor for refractive index detection
URI https://dx.doi.org/10.1016/j.optcom.2025.132603
Volume 599
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0030-4018
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001438
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ja9tAFB5K0kIvpStNN-bQm1HwRNYsxxAS0pKmhibU9CLGmlHiQCUj2cH01_ebxZJbl9IWehFm0Ob3zbz53tNbCHmLHUKzlMsEk6eEgeLWXDoySTFNS6WFLbnQvtmEOD-Xk4kax3aprW8nIKpKrlZq_l-hxhjAdqmzfwF3d1MM4DdAxxGw4_hHwH84Gyc1FMHX2TeQSfy5ZHx0MmiXTamxhudgy3iVAazsuvLpAi0M2brx4YbYLX3S1K2rJGLsamDswodqVZsc9uPcl3YuNlNLOmZ-NgtRv9XVChPvqvfXB51yquverx2Gvlzj5Kbuz-182J_t7HqpN_0SBz_7JbYTZoICToeYEVHlRgWchRZJW8o8-BVu9iEzF9mDh2T7MJ75MO03ry6k8JP_yIs7g9MxlrpKsLsHIlNQ1ruH744n77v92TV8D8U6w6usEyp91N_2s35NWDZIyMVD8iBaD_QwoP6I3LHVY3LPR_EW7RNy-QP2NGJPI_Y0Yk877GnAngJ72mNPPfa0w_4puTw5vjg6TWLfjKQAHV0kI86MsAw7h86YLhlIZFa4OkJTC74Lhq2HzFg1HTEjldCKy2IoTcmNKoyU1qbPyE5VV_Y5oQILGQYll9ZRv5Qr1x5BKquMo7IjvkeStXDyeSiPkq_jBm_yIMzcCTMPwtwjYi3BPFK8QN1ygP7bK1_885Uvyf1-fr4iO4tmaV-Tu8XtYtY2b-Ls-A77UXcp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLP-optimized+arc-PCF+surface+plasmon+resonance+sensor+for+refractive+index+detection&rft.jtitle=Optics+communications&rft.au=Li%2C+Pengxiang&rft.au=Wang%2C+Hao&rft.au=Tong%2C+Zhengrong&rft.au=Zhang%2C+Weihua&rft.date=2026-01-01&rft.pub=Elsevier+B.V&rft.issn=0030-4018&rft.volume=599&rft_id=info:doi/10.1016%2Fj.optcom.2025.132603&rft.externalDocID=S0030401825011319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4018&client=summon