A hybrid linear–nonlinear model with two-stage feature selection for TiO2 content prediction in ilmenite based on XRF spectroscopy
X-ray fluorescence (XRF) spectroscopy provides an efficient and non-destructive means for determining the Titanium Dioxide (TiO2) content in ilmenite. However, the accuracy of this technique can be compromised by matrix effects, and its industrial application is often bottlenecked by the limited ava...
Gespeichert in:
| Veröffentlicht in: | Minerals engineering Jg. 236; S. 109929 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.02.2026
|
| Schlagworte: | |
| ISSN: | 0892-6875 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | X-ray fluorescence (XRF) spectroscopy provides an efficient and non-destructive means for determining the Titanium Dioxide (TiO2) content in ilmenite. However, the accuracy of this technique can be compromised by matrix effects, and its industrial application is often bottlenecked by the limited availability of labeled samples. To address this issue, this paper proposes an efficient method (L(FeTi)-CMI-SICA) for predicting the TiO2 content in ilmenite. The paper initially proposes a two-stage feature selection method based on physical mechanism analysis and mutual information statistics, aimed at addressing the issue of inaccurate feature selection due to matrix effects. Subsequently, this paper introduces a Stacked Interpretable Constructive Algorithm (SICA) for resource-constrained industrial scenarios, which achieves precise modeling of the complex nonlinear relationships in XRF data through a multi-layer feature abstraction mechanism. Finally, this paper employs SICA as the nonlinear component of the model, combining it with linear least squares regression to construct a linear–nonlinear hybrid model. Extensive experiments on the ilmenite XRF dataset demonstrate that our method not only achieves superior performance across key metrics but also exhibits remarkable robustness under the constraint of small-sample conditions.
•A two-stage feature selection method is proposed to accurately identify key features for TiO2 content prediction in ilmenite.•A hybrid model is developed to effectively correct matrix effects and enhance prediction accuracy.•Stacked Interpretable Constructive Algorithm (SICA) employs a multi-layer feature abstraction mechanism to precisely model complex nonlinear relationships in XRF data.•Extensive experiments on industrial dataset show that our method outperforms existing approaches in prediction accuracy. |
|---|---|
| AbstractList | X-ray fluorescence (XRF) spectroscopy provides an efficient and non-destructive means for determining the Titanium Dioxide (TiO2) content in ilmenite. However, the accuracy of this technique can be compromised by matrix effects, and its industrial application is often bottlenecked by the limited availability of labeled samples. To address this issue, this paper proposes an efficient method (L(FeTi)-CMI-SICA) for predicting the TiO2 content in ilmenite. The paper initially proposes a two-stage feature selection method based on physical mechanism analysis and mutual information statistics, aimed at addressing the issue of inaccurate feature selection due to matrix effects. Subsequently, this paper introduces a Stacked Interpretable Constructive Algorithm (SICA) for resource-constrained industrial scenarios, which achieves precise modeling of the complex nonlinear relationships in XRF data through a multi-layer feature abstraction mechanism. Finally, this paper employs SICA as the nonlinear component of the model, combining it with linear least squares regression to construct a linear–nonlinear hybrid model. Extensive experiments on the ilmenite XRF dataset demonstrate that our method not only achieves superior performance across key metrics but also exhibits remarkable robustness under the constraint of small-sample conditions.
•A two-stage feature selection method is proposed to accurately identify key features for TiO2 content prediction in ilmenite.•A hybrid model is developed to effectively correct matrix effects and enhance prediction accuracy.•Stacked Interpretable Constructive Algorithm (SICA) employs a multi-layer feature abstraction mechanism to precisely model complex nonlinear relationships in XRF data.•Extensive experiments on industrial dataset show that our method outperforms existing approaches in prediction accuracy. |
| ArticleNumber | 109929 |
| Author | Wang, Lanhao Duan, Mingzi Nan, Jing Dai, Wei |
| Author_xml | – sequence: 1 givenname: Wei surname: Dai fullname: Dai, Wei organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu Province, China – sequence: 2 givenname: Mingzi surname: Duan fullname: Duan, Mingzi organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu Province, China – sequence: 3 givenname: Jing surname: Nan fullname: Nan, Jing email: jingn@cumt.edu.cn organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu Province, China – sequence: 4 givenname: Lanhao surname: Wang fullname: Wang, Lanhao organization: State Key Laboratory of Coking Coal Resources Green Exploitation, China University of Mining and Technology, Xuzhou 221116, China |
| BookMark | eNp9UMFKAzEQzaGCrfoHHvIDW5Nss7u5CKVYFQoFqeAtZDezbcpuUpJo6c2Df-Af-iWmrGdhYIY3vDfz3gSNrLOA0C0lU0pocbef9saC3U4ZYTxBQjAxQmNSCZYVVckv0SSEPSGEl5UYo6853p1qbzTuEk35n8_vJDjMuHcaOnw0cYfj0WUhqi3gFlR894ADdNBE4yxunccbs2a4cTaCjfjgQZthZ1J1PVgTAdcqgMYJfHtZ4nBIbO9C4w6na3TRqi7AzV-_Qq_Lh83iKVutH58X81XW0JLFjCrgShMQVZuagLrmjKiaEw1KVAJErgsCuS6rusjZTGhGWbLJCq7ymtMqv0KzQbdJh4OHVh686ZU_SUrkOT25l0N68pyeHNJLtPuBBum3DwNehsaAbZJJn0xI7cz_Ar83u4IH |
| Cites_doi | 10.1016/j.ijmst.2022.05.001 10.1039/D2AY00593J 10.1016/j.apradiso.2022.110191 10.1016/j.mineng.2019.106117 10.3390/agronomy10060787 10.1016/j.fuel.2022.125991 10.1007/s10661-022-09750-x 10.1016/j.mineng.2024.109002 10.1016/j.microc.2019.03.077 10.1002/1099-128X(200009/12)14:5/6<751::AID-CEM622>3.0.CO;2-D 10.1016/j.mineng.2022.107458 10.1088/1361-6501/abf61a 10.1039/D3JA00392B 10.1016/j.chemolab.2023.104842 10.1109/TII.2024.3423487 10.1109/72.623214 10.1039/D3JA00120B 10.1016/j.molliq.2020.113726 10.1016/j.engappai.2023.107052 10.1109/TIM.2023.3328080 10.1038/s41598-024-53988-z 10.46770/AS.2020.01.003 10.1016/j.sab.2006.06.014 10.1016/j.sab.2024.107001 10.1016/j.aca.2024.343073 10.1016/j.mineng.2023.108003 10.1016/j.sab.2021.106310 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.mineng.2025.109929 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_mineng_2025_109929 S0892687525007575 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9DU 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLOT ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SSG SSZ T5K WUQ XPP ZMT ~02 ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c172t-1ae5ad0e98fad09ebb520ab50dea989e93d60e3d78b63249d212057265a3b5183 |
| ISSN | 0892-6875 |
| IngestDate | Thu Nov 27 01:03:10 EST 2025 Wed Dec 10 14:25:50 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hybrid model X-ray fluorescence Geometric control strategy Stacked structure Ilmenite |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c172t-1ae5ad0e98fad09ebb520ab50dea989e93d60e3d78b63249d212057265a3b5183 |
| ParticipantIDs | crossref_primary_10_1016_j_mineng_2025_109929 elsevier_sciencedirect_doi_10_1016_j_mineng_2025_109929 |
| PublicationCentury | 2000 |
| PublicationDate | February 2026 2026-02-00 |
| PublicationDateYYYYMMDD | 2026-02-01 |
| PublicationDate_xml | – month: 02 year: 2026 text: February 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Minerals engineering |
| PublicationYear | 2026 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Zhang, Lu, Xu, Ren, You (b12) 2022; 194 Yang, Li, Lyu, Zhang, Zhao (b24) 2023; 38 Lemberge, De Raedt, Janssens, Wei, Van Espen (b6) 2000; 14 Wen, Liu, Zhou, Liu, Zhou (b21) 2023; 332 Li, Tu, Zhang, Cheng, Yang (b10) 2022; 184 Tavares, Mouazen, Alves, dos Santos, Melquiades, Pereira de Carvalho, Molin (b18) 2020; 10 Xu, Klein, Li, Gopaluni (b23) 2023; 192 Xie, Xiao, Mao (b22) 2023; 72 Yuan, Zhao, Meng, Zhang, Xu, Li (b27) 2021; 171 Zhang, Li, Yang (b28) 2024; 39 Lai, Xi, Sun, He, Wang, Zheng, Mao (b5) 2020; 41 Li, Hao, Yuan, Liu, Li (b7) 2020; 315 Rousseau (b17) 2006; 61 Wang, Zhong, Wang, Dai (b20) 2024; 218 Li, Klein, Sun, Kou (b8) 2020; 146 Andric, Kvascev, Cvetanovic, Stojanovic, Bacanin, Gajic-Kvascev (b2) 2024; 14 Lu, Li, Yang, Zhu, Lv (b13) 2023; 238 Zhang, Zhang, Zhou, Lu (b29) 2022; 32 Meng, Du, Yuan, Xu, Zhao, Li (b14) 2022; 179 Aidene, Khaydukova, Pashkova, Chubarov, Savinov, Semenov, Kirsanov, Panchuk (b1) 2021; 185 Li, Tang, Ge, Wu, Cheng, Sun (b9) 2019; vol. 1423 Kwok, Yeung (b4) 1997; 8 Yang, Li, Zhang, Lyu (b25) 2024; 1323 Panlin, Jiqing, Anquan, Jieqing (b16) 1999; 22 Yang, Li, Zhao, Lu, Yang, Zhu (b26) 2022; 14 Li, Yang, Ma, Cheng, Lu, Zhao (b11) 2021; 32 Nan, Dai, Yuan, Zhou (b15) 2024 Babos, Costa, Pereira-Filho (b3) 2019; 147 Zhang, Zhou, Karimi, Fujita, Hu, Wen, Wang (b30) 2023; 126 Wang, Gan, Zhao, Yin, Ye, Sheng, Li, Liang, Jia, Fang (b19) 2024; 219 Yang (10.1016/j.mineng.2025.109929_b24) 2023; 38 Wang (10.1016/j.mineng.2025.109929_b19) 2024; 219 Li (10.1016/j.mineng.2025.109929_b10) 2022; 184 Li (10.1016/j.mineng.2025.109929_b12) 2022; 194 Yang (10.1016/j.mineng.2025.109929_b26) 2022; 14 Andric (10.1016/j.mineng.2025.109929_b2) 2024; 14 Lu (10.1016/j.mineng.2025.109929_b13) 2023; 238 Nan (10.1016/j.mineng.2025.109929_b15) 2024 Xu (10.1016/j.mineng.2025.109929_b23) 2023; 192 Aidene (10.1016/j.mineng.2025.109929_b1) 2021; 185 Zhang (10.1016/j.mineng.2025.109929_b29) 2022; 32 Lemberge (10.1016/j.mineng.2025.109929_b6) 2000; 14 Meng (10.1016/j.mineng.2025.109929_b14) 2022; 179 Babos (10.1016/j.mineng.2025.109929_b3) 2019; 147 Wang (10.1016/j.mineng.2025.109929_b20) 2024; 218 Yang (10.1016/j.mineng.2025.109929_b25) 2024; 1323 Zhang (10.1016/j.mineng.2025.109929_b30) 2023; 126 Wen (10.1016/j.mineng.2025.109929_b21) 2023; 332 Rousseau (10.1016/j.mineng.2025.109929_b17) 2006; 61 Xie (10.1016/j.mineng.2025.109929_b22) 2023; 72 Li (10.1016/j.mineng.2025.109929_b8) 2020; 146 Yuan (10.1016/j.mineng.2025.109929_b27) 2021; 171 Li (10.1016/j.mineng.2025.109929_b7) 2020; 315 Zhang (10.1016/j.mineng.2025.109929_b28) 2024; 39 Panlin (10.1016/j.mineng.2025.109929_b16) 1999; 22 Lai (10.1016/j.mineng.2025.109929_b5) 2020; 41 Tavares (10.1016/j.mineng.2025.109929_b18) 2020; 10 Li (10.1016/j.mineng.2025.109929_b9) 2019; vol. 1423 Li (10.1016/j.mineng.2025.109929_b11) 2021; 32 Kwok (10.1016/j.mineng.2025.109929_b4) 1997; 8 |
| References_xml | – volume: 185 year: 2021 ident: b1 article-title: Does chemometrics work for matrix effects correction in X-ray fluorescence analysis? publication-title: Spectrochim. Acta B – volume: 38 start-page: 1830 year: 2023 end-page: 1840 ident: b24 article-title: Quantitative analysis of heavy metals in soil via hierarchical deep neural networks with X-ray fluorescence spectroscopy publication-title: J. Anal. At. Spectrom. – volume: 61 start-page: 759 year: 2006 end-page: 777 ident: b17 article-title: Corrections for matrix effects in X-ray fluorescence analysis—A tutorial publication-title: Spectrochim. Acta B – volume: 10 start-page: 787 year: 2020 ident: b18 article-title: Assessing soil key fertility attributes using a portable X-ray fluorescence: A simple method to overcome matrix effect publication-title: Agronomy – volume: vol. 1423 year: 2019 ident: b9 article-title: Application of small sample BP neural network in quantitative analysis of EDXRF publication-title: Journal of Physics: Conference Series – volume: 219 year: 2024 ident: b19 article-title: Identification study of soil types based on feature factors of XRF spectrum combining with machine learning publication-title: Spectrochim. Acta B – volume: 332 year: 2023 ident: b21 article-title: Explainable machine learning rapid approach to evaluate coal ash content based on X-ray fluorescence publication-title: Fuel – year: 2024 ident: b15 article-title: An interpretable constructive algorithm for incremental random weight neural networks and its application publication-title: IEEE Trans. Ind. Inform. – volume: 14 start-page: 3944 year: 2022 end-page: 3952 ident: b26 article-title: Quantitative analysis of heavy metals in soil by X-ray fluorescence with PCA–ANOVA and support vector regression publication-title: Anal. Methods – volume: 147 start-page: 628 year: 2019 end-page: 634 ident: b3 article-title: Wavelength dispersive X-ray fluorescence (WD-XRF) applied to speciation of sulphur in mineral supplement for cattle: Evaluation of the chemical and matrix effects publication-title: Microchem. J. – volume: 41 start-page: 20 year: 2020 end-page: 28 ident: b5 article-title: Multi-elemental analysis by energy dispersion X-ray fluorescence spectrometry and its application on the traceability of soybean origin publication-title: At. Spectrosc. – volume: 14 start-page: 3666 year: 2024 ident: b2 article-title: Deep learning assisted XRF spectra classification publication-title: Sci. Rep. – volume: 146 year: 2020 ident: b8 article-title: Applying receiver-operating-characteristic (ROC) to bulk ore sorting using XRF publication-title: Miner. Eng. – volume: 171 year: 2021 ident: b27 article-title: Adsorption mode of sodium citrate for achieving effective flotation separation of ilmenite from titanaugite publication-title: Miner. Eng. – volume: 32 start-page: 865 year: 2022 end-page: 876 ident: b29 article-title: Application of multi-stage dynamic magnetizing roasting technology on the utilization of cryptocrystalline oolitic hematite: A review publication-title: Int. J. Min. Sci. Technol. – volume: 14 start-page: 751 year: 2000 end-page: 763 ident: b6 article-title: Quantitative analysis of 16–17th century archaeological glass vessels using PLS regression of EPXMA and publication-title: J. Chemom.: A J. Chemom. Soc. – volume: 194 start-page: 95 year: 2022 ident: b12 article-title: Estimation of metal elements content in soil using x-ray fluorescence based on multilayer perceptron publication-title: Environ. Monit. Assess. – volume: 184 year: 2022 ident: b10 article-title: Application of a back propagation neural network model based on genetic algorithm to in situ analysis of marine sediment cores by X-ray fluorescence core scanner publication-title: Appl. Radiat. Isot. – volume: 39 start-page: 478 year: 2024 end-page: 490 ident: b28 article-title: A deep spectral prediction network to quantitatively determine heavy metal elements in soil by X-ray fluorescence publication-title: J. Anal. At. Spectrom. – volume: 126 year: 2023 ident: b30 article-title: Attention gate guided multiscale recursive fusion strategy for deep neural network-based fault diagnosis publication-title: Eng. Appl. Artif. Intell. – volume: 22 year: 1999 ident: b16 article-title: Comparison of artificial neural network with least-square regression in quantitative analysis of XRF publication-title: Nucl. Tech. – volume: 179 year: 2022 ident: b14 article-title: Study on the mineral characteristics and separation performances of a low-TiO2 ilmenite publication-title: Miner. Eng. – volume: 8 start-page: 1131 year: 1997 end-page: 1148 ident: b4 article-title: Objective functions for training new hidden units in constructive neural networks publication-title: IEEE Trans. Neural Netw. – volume: 238 year: 2023 ident: b13 article-title: Quantitative analysis of heavy metals in soil by X-ray fluorescence with improved variable selection strategy and bayesian optimized support vector regression publication-title: Chemometr. Intell. Lab. Syst. – volume: 72 start-page: 1 year: 2023 end-page: 10 ident: b22 article-title: Rapid detection of iron ore grades based on fractional-order derivative spectroscopy and machine learning publication-title: IEEE Trans. Instrum. Meas. – volume: 315 year: 2020 ident: b7 article-title: Regulating effects of citric acid and pregelatinized starch on selective flocculation flotation of micro-fine siderite publication-title: J. Mol. Liq. – volume: 218 year: 2024 ident: b20 article-title: A mechanistic and data-driven approach for real-time online determination of ilmenite grade in pulp by X-ray fluorescence publication-title: Miner. Eng. – volume: 1323 year: 2024 ident: b25 article-title: An integrated CBLA-net with fractional discrete wavelet transform and frequency-based CARS to predict heavy metal elements by XRF publication-title: Anal. Chim. Acta – volume: 192 year: 2023 ident: b23 article-title: Evaluation of logistic regression and support vector machine approaches for XRF based particle sorting for a copper ore publication-title: Miner. Eng. – volume: 32 year: 2021 ident: b11 article-title: X-ray fluorescence spectroscopic analysis of trace elements in soil with an adaboost back propagation neural network and multivariate-partial least squares regression publication-title: Meas. Sci. Technol. – volume: 32 start-page: 865 issue: 4 year: 2022 ident: 10.1016/j.mineng.2025.109929_b29 article-title: Application of multi-stage dynamic magnetizing roasting technology on the utilization of cryptocrystalline oolitic hematite: A review publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2022.05.001 – volume: 14 start-page: 3944 issue: 40 year: 2022 ident: 10.1016/j.mineng.2025.109929_b26 article-title: Quantitative analysis of heavy metals in soil by X-ray fluorescence with PCA–ANOVA and support vector regression publication-title: Anal. Methods doi: 10.1039/D2AY00593J – volume: 184 year: 2022 ident: 10.1016/j.mineng.2025.109929_b10 article-title: Application of a back propagation neural network model based on genetic algorithm to in situ analysis of marine sediment cores by X-ray fluorescence core scanner publication-title: Appl. Radiat. Isot. doi: 10.1016/j.apradiso.2022.110191 – volume: 146 year: 2020 ident: 10.1016/j.mineng.2025.109929_b8 article-title: Applying receiver-operating-characteristic (ROC) to bulk ore sorting using XRF publication-title: Miner. Eng. doi: 10.1016/j.mineng.2019.106117 – volume: 10 start-page: 787 issue: 6 year: 2020 ident: 10.1016/j.mineng.2025.109929_b18 article-title: Assessing soil key fertility attributes using a portable X-ray fluorescence: A simple method to overcome matrix effect publication-title: Agronomy doi: 10.3390/agronomy10060787 – volume: 332 year: 2023 ident: 10.1016/j.mineng.2025.109929_b21 article-title: Explainable machine learning rapid approach to evaluate coal ash content based on X-ray fluorescence publication-title: Fuel doi: 10.1016/j.fuel.2022.125991 – volume: 194 start-page: 95 issue: 2 year: 2022 ident: 10.1016/j.mineng.2025.109929_b12 article-title: Estimation of metal elements content in soil using x-ray fluorescence based on multilayer perceptron publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-022-09750-x – volume: 218 year: 2024 ident: 10.1016/j.mineng.2025.109929_b20 article-title: A mechanistic and data-driven approach for real-time online determination of ilmenite grade in pulp by X-ray fluorescence publication-title: Miner. Eng. doi: 10.1016/j.mineng.2024.109002 – volume: 147 start-page: 628 year: 2019 ident: 10.1016/j.mineng.2025.109929_b3 article-title: Wavelength dispersive X-ray fluorescence (WD-XRF) applied to speciation of sulphur in mineral supplement for cattle: Evaluation of the chemical and matrix effects publication-title: Microchem. J. doi: 10.1016/j.microc.2019.03.077 – volume: 14 start-page: 751 issue: 5–6 year: 2000 ident: 10.1016/j.mineng.2025.109929_b6 article-title: Quantitative analysis of 16–17th century archaeological glass vessels using PLS regression of EPXMA and μ-XRF data publication-title: J. Chemom.: A J. Chemom. Soc. doi: 10.1002/1099-128X(200009/12)14:5/6<751::AID-CEM622>3.0.CO;2-D – volume: 179 year: 2022 ident: 10.1016/j.mineng.2025.109929_b14 article-title: Study on the mineral characteristics and separation performances of a low-TiO2 ilmenite publication-title: Miner. Eng. doi: 10.1016/j.mineng.2022.107458 – volume: 32 issue: 10 year: 2021 ident: 10.1016/j.mineng.2025.109929_b11 article-title: X-ray fluorescence spectroscopic analysis of trace elements in soil with an adaboost back propagation neural network and multivariate-partial least squares regression publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/abf61a – volume: 171 year: 2021 ident: 10.1016/j.mineng.2025.109929_b27 article-title: Adsorption mode of sodium citrate for achieving effective flotation separation of ilmenite from titanaugite publication-title: Miner. Eng. – volume: 39 start-page: 478 issue: 2 year: 2024 ident: 10.1016/j.mineng.2025.109929_b28 article-title: A deep spectral prediction network to quantitatively determine heavy metal elements in soil by X-ray fluorescence publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00392B – volume: 238 year: 2023 ident: 10.1016/j.mineng.2025.109929_b13 article-title: Quantitative analysis of heavy metals in soil by X-ray fluorescence with improved variable selection strategy and bayesian optimized support vector regression publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2023.104842 – year: 2024 ident: 10.1016/j.mineng.2025.109929_b15 article-title: An interpretable constructive algorithm for incremental random weight neural networks and its application publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2024.3423487 – volume: 8 start-page: 1131 issue: 5 year: 1997 ident: 10.1016/j.mineng.2025.109929_b4 article-title: Objective functions for training new hidden units in constructive neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.623214 – volume: 38 start-page: 1830 issue: 9 year: 2023 ident: 10.1016/j.mineng.2025.109929_b24 article-title: Quantitative analysis of heavy metals in soil via hierarchical deep neural networks with X-ray fluorescence spectroscopy publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00120B – volume: 315 year: 2020 ident: 10.1016/j.mineng.2025.109929_b7 article-title: Regulating effects of citric acid and pregelatinized starch on selective flocculation flotation of micro-fine siderite publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113726 – volume: 126 year: 2023 ident: 10.1016/j.mineng.2025.109929_b30 article-title: Attention gate guided multiscale recursive fusion strategy for deep neural network-based fault diagnosis publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107052 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.mineng.2025.109929_b22 article-title: Rapid detection of iron ore grades based on fractional-order derivative spectroscopy and machine learning publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3328080 – volume: 22 year: 1999 ident: 10.1016/j.mineng.2025.109929_b16 article-title: Comparison of artificial neural network with least-square regression in quantitative analysis of XRF publication-title: Nucl. Tech. – volume: 14 start-page: 3666 issue: 1 year: 2024 ident: 10.1016/j.mineng.2025.109929_b2 article-title: Deep learning assisted XRF spectra classification publication-title: Sci. Rep. doi: 10.1038/s41598-024-53988-z – volume: 41 start-page: 20 issue: 1 year: 2020 ident: 10.1016/j.mineng.2025.109929_b5 article-title: Multi-elemental analysis by energy dispersion X-ray fluorescence spectrometry and its application on the traceability of soybean origin publication-title: At. Spectrosc. doi: 10.46770/AS.2020.01.003 – volume: 61 start-page: 759 issue: 7 year: 2006 ident: 10.1016/j.mineng.2025.109929_b17 article-title: Corrections for matrix effects in X-ray fluorescence analysis—A tutorial publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2006.06.014 – volume: vol. 1423 year: 2019 ident: 10.1016/j.mineng.2025.109929_b9 article-title: Application of small sample BP neural network in quantitative analysis of EDXRF – volume: 219 year: 2024 ident: 10.1016/j.mineng.2025.109929_b19 article-title: Identification study of soil types based on feature factors of XRF spectrum combining with machine learning publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2024.107001 – volume: 1323 year: 2024 ident: 10.1016/j.mineng.2025.109929_b25 article-title: An integrated CBLA-net with fractional discrete wavelet transform and frequency-based CARS to predict heavy metal elements by XRF publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2024.343073 – volume: 192 year: 2023 ident: 10.1016/j.mineng.2025.109929_b23 article-title: Evaluation of logistic regression and support vector machine approaches for XRF based particle sorting for a copper ore publication-title: Miner. Eng. doi: 10.1016/j.mineng.2023.108003 – volume: 185 year: 2021 ident: 10.1016/j.mineng.2025.109929_b1 article-title: Does chemometrics work for matrix effects correction in X-ray fluorescence analysis? publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2021.106310 |
| SSID | ssj0005789 |
| Score | 2.446411 |
| Snippet | X-ray fluorescence (XRF) spectroscopy provides an efficient and non-destructive means for determining the Titanium Dioxide (TiO2) content in ilmenite. However,... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 109929 |
| SubjectTerms | Geometric control strategy Hybrid model Ilmenite Stacked structure X-ray fluorescence |
| Title | A hybrid linear–nonlinear model with two-stage feature selection for TiO2 content prediction in ilmenite based on XRF spectroscopy |
| URI | https://dx.doi.org/10.1016/j.mineng.2025.109929 |
| Volume | 236 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0892-6875 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005789 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8IK7auMkPvEVBrRPH8WOFNsEEBUHR-hbZsdtl2tIqLWMgIfHAP-Af8ks4viWZhhAgIVVpZcluc85X5_Px53MQepJRUkqt4I-UjEiczhMZ54lI41ylI1bqMtWZtMUm2GSSz2b8zWDwJZyFOTthdZ2fn_PVf3U1tIGzzdHZv3B3Oyg0wGdwOlzB7XD9I8ePo6NP5hhWZAikaIKaIaldUgzRuOo3PgL7cRkDP1zoaK5tis9obQvjBAHitHpNrJzdSAZWjdnVCerI6uRUG8IamQehMpsOs7f7kT25aTJkLlcXNoxfVTa99TrSXQLELkpuJQWHuupotfCi_nrxuW2duMaDXtdDH-5-KeojseyHMEireg5xtXC2phMy2emPkzjLXV2VMFcTly3l0rzvQhDHT0_hDuoFLPsJNYmyuI-mXMyo_c4MbUYG-geMidEraJswymFe3x6_2JsddBohZmsotj8lnL20AsHL3_VrbtPjK9Ob6IZfaOCxA8gtNND1bXS9l37yDvo2xg4q2AHjx9fvLUiwBQk2IMEtSLAHCW5BggEk2IAEe5DgDiS4gpcHCbYgwdAIIMF9kNxF7_f3ps-ex74qR1wC2d3EI6GpUEPN8zm8cS0lJUMh6VBpwXOueaKyoU4Uy6UpBcAVkCMwJMmoSCSFJ8g9tAU3o3cQVpKxLM0zAWvclPKSE5UB403kKIFVbCl2URzsWaxc8pUiqBKPC2f_wti_cPbfRSwYvfAE0hHDAnDy2573_7nnA3Stg_RDtLVpPuhH6Gp5tqnWzWMPqJ99jZt4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+linear%E2%80%93nonlinear+model+with+two-stage+feature+selection+for+TiO2+content+prediction+in+ilmenite+based+on+XRF+spectroscopy&rft.jtitle=Minerals+engineering&rft.au=Dai%2C+Wei&rft.au=Duan%2C+Mingzi&rft.au=Nan%2C+Jing&rft.au=Wang%2C+Lanhao&rft.date=2026-02-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.volume=236&rft_id=info:doi/10.1016%2Fj.mineng.2025.109929&rft.externalDocID=S0892687525007575 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |