A PATTERN LANGUAGE APPROACH TO IDENTIFY APPROPRIATE MACHINE LEARNING ALGORITHMS IN THE CONTEXT OF PRODUCT DEVELOPMENT

The product development process faces several challenges, such as an increasing and differentiated number of customer requirements, increasing product complexity, and shortened time-to-market. To address these challenges, the implementation of automation approaches in form of machine learning (ML) a...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Design Society Vol. 3; pp. 365 - 374
Main Authors: Sonntag, Sebastian, Luttmer, Janosch, Pluhnau, Robin, Nagarajah, Arun
Format: Journal Article Conference Proceeding
Language:English
Published: Cambridge Cambridge University Press 01.07.2023
Subjects:
ISSN:2732-527X, 2732-527X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The product development process faces several challenges, such as an increasing and differentiated number of customer requirements, increasing product complexity, and shortened time-to-market. To address these challenges, the implementation of automation approaches in form of machine learning (ML) algorithms appears promising. However, companies lack the implementation of these approaches in their processes, inter alia due to inadequate knowledge and experience in this field. Therefore, the aim of this paper is to develop a structured formulized way of characterising ML algorithms, which can support non-experts in identifying the optimal algorithm to solve a given problem. First, existing approaches covering the determination of appropriate ML algorithms for a given task are examined. Based on this, a pattern language approach is introduced to characterise ML algorithms and problems, allowing matching to be performed to identify the most suitable one for a given task. Due to their broad application, the concept is demonstrated by creating patterns for decision trees and artificial neural networks. A study is conducted to prove that the proposed concept is appropriate to support the ML algorithm selection.
AbstractList The product development process faces several challenges, such as an increasing and differentiated number of customer requirements, increasing product complexity, and shortened time-to-market. To address these challenges, the implementation of automation approaches in form of machine learning (ML) algorithms appears promising. However, companies lack the implementation of these approaches in their processes, inter alia due to inadequate knowledge and experience in this field. Therefore, the aim of this paper is to develop a structured formulized way of characterising ML algorithms, which can support non-experts in identifying the optimal algorithm to solve a given problem. First, existing approaches covering the determination of appropriate ML algorithms for a given task are examined. Based on this, a pattern language approach is introduced to characterise ML algorithms and problems, allowing matching to be performed to identify the most suitable one for a given task. Due to their broad application, the concept is demonstrated by creating patterns for decision trees and artificial neural networks. A study is conducted to prove that the proposed concept is appropriate to support the ML algorithm selection.
Author Pluhnau, Robin
Sonntag, Sebastian
Nagarajah, Arun
Luttmer, Janosch
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Sonntag
  fullname: Sonntag, Sebastian
– sequence: 2
  givenname: Janosch
  surname: Luttmer
  fullname: Luttmer, Janosch
– sequence: 3
  givenname: Robin
  surname: Pluhnau
  fullname: Pluhnau, Robin
– sequence: 4
  givenname: Arun
  surname: Nagarajah
  fullname: Nagarajah, Arun
BookMark eNpNkE1rgzAYx8PoYF3X075AYMdhlxeT6DHYVAM2iktHdwpqFVa22ml72LefpTvs9Dw8z_8FfvdgcugODQCPGC0wwuLluBsWBBG6oOIGTImgxGNEbCf_9jswH4Y9QohwzEKMpuAsYS6tVYWBqTTxRsYKyjwvMhkl0GZQL5WxevV-PeaFllbB9fjURsFUycJoE0OZxlmhbbJ-hdpAmygYZcaqrYXZCo6-5SaycKneVJrl6zHwAdy25efQzP_mDGxWykaJl2axjmTq1Vhg4QVVueN10HLRMtyKXcDKsApKFjK_9ilrOQ2JT1FTV5hWIS4xIXVD_Ib7wie0JXQGnq65x777PjfDye27c38YKx0JAs4E5pyNquerqu67Yeib1h37j6-y_3EYuQtaN6J1F7SOCvoLM2ZjCw
ContentType Journal Article
Conference Proceeding
Copyright The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1017/pds.2023.37
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2732-527X
EndPage 374
ExternalDocumentID 10_1017_pds_2023_37
GroupedDBID 09C
09E
0R~
AANRG
AASVR
AAYXX
ABGDZ
ABVZP
ABXHF
ACAJB
ACDLN
ACQPF
ACZWT
ADDNB
ADKIL
ADVJH
AEBAK
AFFHD
AFKRA
AFZFC
AGABE
AGBYD
AGJUD
AHRGI
AKMAY
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARCSS
BENPR
BLZWO
CCPQU
CCQAD
CITATION
CJCSC
DOHLZ
EBS
IKXGN
IPYYG
PHGZM
PHGZT
PIMPY
RCA
ROL
WFFJZ
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c1717-8bad6c8f67f51f7d85a9b8a5954c435f6392430ecb13b91a122ce24e647423f23
IEDL.DBID PIMPY
ISSN 2732-527X
IngestDate Sun Nov 09 08:46:53 EST 2025
Sat Nov 29 04:05:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1717-8bad6c8f67f51f7d85a9b8a5954c435f6392430ecb13b91a122ce24e647423f23
Notes ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
OpenAccessLink https://www.proquest.com/publiccontent/docview/2886571665?pq-origsite=%requestingapplication%
PQID 2886571665
PQPubID 6624168
PageCount 10
ParticipantIDs proquest_journals_2886571665
crossref_primary_10_1017_pds_2023_37
PublicationCentury 2000
PublicationDate 20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 20230701
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Proceedings of the Design Society
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0002615910
Score 2.2313895
Snippet The product development process faces several challenges, such as an increasing and differentiated number of customer requirements, increasing product...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 365
SubjectTerms Algorithms
Machine learning
Product development
Title A PATTERN LANGUAGE APPROACH TO IDENTIFY APPROPRIATE MACHINE LEARNING ALGORITHMS IN THE CONTEXT OF PRODUCT DEVELOPMENT
URI https://www.proquest.com/docview/2886571665
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAEN
  databaseName: Cambridge University Press Wholly Gold Open Access Journals
  customDbUrl:
  eissn: 2732-527X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002615910
  issn: 2732-527X
  databaseCode: IKXGN
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: http://journals.cambridge.org/action/login
  providerName: Cambridge University Press
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2732-527X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002615910
  issn: 2732-527X
  databaseCode: BENPR
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2732-527X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002615910
  issn: 2732-527X
  databaseCode: PIMPY
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b9swED20dodmSdOmyFcDDlnVWJQoSlPAOLQtwKYIlQacSaAkCsjiOJ-_P6QlO-6SKasOIgiedPdI3r0HcEETre3a115kaOOFpDSe4znzkoG2AFbXGDd6LTZBhYgXi0R27dFPXVnlJiauA3XL9uzqtm0QvqzvK3difonjOCIW6kfkavXgOQ0pd9faCWp8hb4j3hr0oC_TmbzdnrnY3QKx6bFr03PM0avaUXbj4K_TQd9NTP_H5XWyGe1_7jR_wOF7Vx-S23x1AF_M8ifs7RAS_oIXhiRTjiQXTZkYz9mYIyZlnrHhBKkMpTdcqHR02z6UecoURzNrTAVHU85ykYoxYtNxlqdqMvuHUoHUhKNhJhRfKJSNkH3vZj5UaEf98xDmI66GE68TZvAqn7qsVuo6quImog3xG1rHRCdlrElCwsrCr8aiHhwGA1OVflAmvvYxrgwOTRS6e-EGB7-ht7xfmiNA5SDWUa0trvCTsKn9JK7sYNRoYpGmCcwxXGy8Uqxa_o2iLUyjhXVe4ZxXBPQYzjbuKLqf0Nq2q3_ysfkUvrtx2ircM-g9P76YP_Cten2-e3o8h_41FzI_776mN8l10ac
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tukjAhdcidlnAh-UYaJyHkwNCVps21qZOVFypewpO4khcumVfiD_Fb2TcNKVcuO2Ba0axZM_om_Fjvg_gjMVa49o3TmhY6_hBZRzLc-bEQ40FrG4obfVGbIJJGS2XcXEAv_peGPusssfEDVA3l7U9I_9IoygMsLgPg8_r745VjbK3q72ERhcW5-bnD9yyXX8SY_Tve0oniRqlzlZVwKldZiG50k1YR23I2sBtWRMFOq4iHcSBX2Pt0GLKpr43NHXlelXsapfS2lDfhL691Gwt0QFC_qGPwT4cwGEhZsXF7lQH9yMBJuBtI6Dlpl43lhSceh-s0vp-6vsb-TfpbPLkf1uIp3D0pzORFLuc-wwOzOo5PN4jVXwBt5wUXFmiX5JxOV3waUJ4UcxzPkqJyokYJ1KJyUX3sZgLrhIyQ6OQCckSPpdCTgnPpvlcqHT2hQhJVJqQUS5VslQknxD8b7wYKbKnYHoEi3uZ_UsYrC5X5hWQahjpsNFYG7mx3zZuHNU4GDM6wGrZeOYYznq_l-uOQ6TsHtexEsOjtOFReuwYTnuHl1sgQdvO2yf_Nr-Dh6maZWUm5PlreGTH7F4Vn8Lg5urWvIEH9d3Nt-urt9uYJfD1vqPjN-eNH4I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+Design+Society&rft.atitle=A+PATTERN+LANGUAGE+APPROACH+TO+IDENTIFY+APPROPRIATE+MACHINE+LEARNING+ALGORITHMS+IN+THE+CONTEXT+OF+PRODUCT+DEVELOPMENT&rft.au=Sonntag%2C+Sebastian&rft.au=Luttmer%2C+Janosch&rft.au=Pluhnau%2C+Robin&rft.au=Nagarajah%2C+Arun&rft.date=2023-07-01&rft.pub=Cambridge+University+Press&rft.eissn=2732-527X&rft.volume=3&rft.spage=365&rft.epage=374&rft_id=info:doi/10.1017%2Fpds.2023.37
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2732-527X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2732-527X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2732-527X&client=summon