Koszulity of dual braid monoid algebras via cluster complexes
The dual braid monoid was introduced by Bessis in his work on complex reflection arrangements. The goal of this work is to show that Koszul duality provides a nice interplay between the dual braid monoid and the cluster complex introduced by Fomin and Zelevinsky. Firstly, we prove koszulity of the d...
Uloženo v:
| Vydáno v: | Annales mathématiques Blaise Pascal Ročník 30; číslo 2; s. 141 - 188 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Université Blaise-Pascal - Clermont-Ferrand
30.04.2024
|
| Témata: | |
| ISSN: | 1259-1734, 2118-7436 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The dual braid monoid was introduced by Bessis in his work on complex reflection arrangements. The goal of this work is to show that Koszul duality provides a nice interplay between the dual braid monoid and the cluster complex introduced by Fomin and Zelevinsky. Firstly, we prove koszulity of the dual braid monoid algebra, by building explicitly the minimal free resolution of the ground field. This is done explicitly using some chains complexes defined in terms of the positive part of the cluster complex. Secondly, we derive various properties of the quadratic dual algebra. We show that it is naturally graded by the noncrossing partition lattice. We get an explicit basis, naturally indexed by positive faces of the cluster complex. Moreover, we find the structure constants via a geometric rule in terms of the cluster fan. Eventually, we realize this dual algebra as a quotient of a Nichols algebra. This latter fact makes a connection with results of Zhang, who used the same algebra to compute the homology of Milnor fibers of reflection arrangements.
Le monoïde dual des tresses a été introduit par Bessis dans le contexte des arrangements d’hyperplanscomplexes. Le but de ce travail est de montrer que la dualité de Koszul fournit une interaction remarquableavec le complexe d’amas introduit par Fomin et Zelevinsky. Premièrement, nous démontrons la koszulitéde l’algèbre du monoïde dual des tresses, en donnant explicitement la résolution libre minimale ducorps de base. Cette construction utilise des complexes de chaînes définis grâce à la partie positive ducomplexe d’amas. Deuxièmement, nous examinons diverses propriétés de l’algèbre quadratique duale.Nous démontrons qu’elle est naturellement graduée par le treillis des partitions non-croisées. Nousobtenons une base explicite, indicée par les faces positives du complexe d’amas. Les constantes destructure peuvent être décrites explicitement en termes de l’éventail des amas. Enfin, nous réalisons cettealgèbre duale comme un quotient d’une algèbre de Nichols. Ce dernier point se relie aux travaux deZhang, qui a utilisé cette algèbre pour un calcul d’homologie des fibres de Milnor d’un arrangement deCoxeter. |
|---|---|
| AbstractList | The dual braid monoid was introduced by Bessis in his work on complex reflection arrangements. The goal of this work is to show that Koszul duality provides a nice interplay between the dual braid monoid and the cluster complex introduced by Fomin and Zelevinsky. Firstly, we prove koszulity of the dual braid monoid algebra, by building explicitly the minimal free resolution of the ground field. This is done explicitly using some chains complexes defined in terms of the positive part of the cluster complex. Secondly, we derive various properties of the quadratic dual algebra. We show that it is naturally graded by the noncrossing partition lattice. We get an explicit basis, naturally indexed by positive faces of the cluster complex. Moreover, we find the structure constants via a geometric rule in terms of the cluster fan. Eventually, we realize this dual algebra as a quotient of a Nichols algebra. This latter fact makes a connection with results of Zhang, who used the same algebra to compute the homology of Milnor fibers of reflection arrangements.
Le monoïde dual des tresses a été introduit par Bessis dans le contexte des arrangements d’hyperplanscomplexes. Le but de ce travail est de montrer que la dualité de Koszul fournit une interaction remarquableavec le complexe d’amas introduit par Fomin et Zelevinsky. Premièrement, nous démontrons la koszulitéde l’algèbre du monoïde dual des tresses, en donnant explicitement la résolution libre minimale ducorps de base. Cette construction utilise des complexes de chaînes définis grâce à la partie positive ducomplexe d’amas. Deuxièmement, nous examinons diverses propriétés de l’algèbre quadratique duale.Nous démontrons qu’elle est naturellement graduée par le treillis des partitions non-croisées. Nousobtenons une base explicite, indicée par les faces positives du complexe d’amas. Les constantes destructure peuvent être décrites explicitement en termes de l’éventail des amas. Enfin, nous réalisons cettealgèbre duale comme un quotient d’une algèbre de Nichols. Ce dernier point se relie aux travaux deZhang, qui a utilisé cette algèbre pour un calcul d’homologie des fibres de Milnor d’un arrangement deCoxeter. |
| Author | Nadeau, Philippe Josuat-Vergès, Matthieu |
| Author_xml | – sequence: 1 givenname: Philippe orcidid: 0000-0002-7230-755X surname: Nadeau fullname: Nadeau, Philippe organization: Combinatoire, théorie des nombres – sequence: 2 givenname: Matthieu orcidid: 0000-0002-7782-2171 surname: Josuat-Vergès fullname: Josuat-Vergès, Matthieu organization: Institut de Recherche en Informatique Fondamentale |
| BackLink | https://hal.science/hal-03373390$$DView record in HAL |
| BookMark | eNotjM1LwzAcQINMsJuCf0KuHjqT_PLRHDyMoU4seNFzyVe1kjajWYfzr7eipwcP3luixZCGgNA1JWtREXZrertfc0bOUMEorUrFQS5QQZnQJVXAL9Ay509CQDApC3T3nPL3FLvDCacW-8lEbEfTedynIc0w8T3MIuNjZ7CLUz6EEbvU72P4CvkSnbcm5nD1zxV6e7h_3e7K-uXxabupS0cVJaW1LigjNQcqmJfGeaW99g4kq6SoWlIZHRSA5ZSISnsug2wptNZL4Z2WsEI3f98PE5v92PVmPDXJdM1uUze_jgDMvSZHCj-PA0zV |
| ContentType | Journal Article |
| Copyright | Attribution |
| Copyright_xml | – notice: Attribution |
| DBID | 1XC VOOES |
| DOI | 10.5802/ambp.420 |
| DatabaseName | Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2118-7436 |
| EndPage | 188 |
| ExternalDocumentID | oai:HAL:hal-03373390v1 |
| GroupedDBID | 1XC 2WC AAFWJ ACIPV ADRWJ AEXTA AFPKN ALMA_UNASSIGNED_HOLDINGS AMVHM E3Z GROUPED_DOAJ OK1 SDR VOOES |
| ID | FETCH-LOGICAL-c1710-bbce7a6943152d6acd79d9dc3628658f08a9e733b410589d46e6f13fbd65dc963 |
| ISSN | 1259-1734 |
| IngestDate | Tue Oct 14 20:31:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1710-bbce7a6943152d6acd79d9dc3628658f08a9e733b410589d46e6f13fbd65dc963 |
| ORCID | 0000-0002-7230-755X 0000-0002-7782-2171 |
| OpenAccessLink | http://dx.doi.org/10.5802/ambp.420 |
| PageCount | 48 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03373390v1 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-30 |
| PublicationDateYYYYMMDD | 2024-04-30 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Annales mathématiques Blaise Pascal |
| PublicationYear | 2024 |
| Publisher | Université Blaise-Pascal - Clermont-Ferrand |
| Publisher_xml | – name: Université Blaise-Pascal - Clermont-Ferrand |
| SSID | ssj0035266 |
| Score | 2.2818105 |
| Snippet | The dual braid monoid was introduced by Bessis in his work on complex reflection arrangements. The goal of this work is to show that Koszul duality provides a... |
| SourceID | hal |
| SourceType | Open Access Repository |
| StartPage | 141 |
| SubjectTerms | Combinatorics Mathematics |
| Title | Koszulity of dual braid monoid algebras via cluster complexes |
| URI | https://hal.science/hal-03373390 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2118-7436 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035266 issn: 1259-1734 databaseCode: DOA dateStart: 19940101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqhQMcEE_xVoS4RYY8nMQ-loWqsEu1Eou0t8iOnW2kkFRNUlX8J_4jYzsvOC0HLm7lVrGdGc3LM98g9BYsYrA7FcFe7hNMFJGYKsYxEzKioQSpmUnTbCLZbOjVFbtYLH4NtTCHMqkqejyy3X8lNcwBsXXp7D-Qe3woTMB3IDqMQHYYb0T4s7r52ZV9poWptAKHuJAubKCGD93XAyYa91DoushOAyXYxHJ17PMJ59jKqnHBpt3a-3Rt3Wo94n4o9Y0TmJ9NxscUjQ2XindTlGY38syXuul4q2OH1-ZB1Ia4davxQnXzwENAZncoE4htU7R2B_3K2K7sYve0BNVSVy1eqf3ediMZhCy4XNhP-iCmMnPgh2pcUwuGMkjmfrVi5iBbMetbsKxeY_u2MeDfyiCiBlyW_xC7dyTwJoU3XPKvl9_Si4-r9Pzz5uzPX2dJiuvlOYxbXmIvDJMwZN4BnO1bQRIxOnjwVvHrTgOmmG04nsU61tt4P2wCLJjtELE3FszlfXSvdz2cpWWZB2ihqofo7tcRt7d5hCbmcerc0czjGOZxLPM4A_M4wDxOzzzOyDyP0ffVp8vTNe4bbODMB8sSC5GphMcMjMgokDHPZMIkk1lo6pVp7lHOFJxZ6FxgyiSJVZz7YS5kHMkMRPcTdFLVlXqKHI_HgadCmoO-JIIKQWKRJxREAVi0xM-foTdw8HRnIVRSDWoObzbVc9N7fX6TP71AdyZufIlO2n2nXqHb2aEtmv1rQ5HfffVn0w |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Koszulity+of+dual+braid+monoid+algebras+via+cluster+complexes&rft.jtitle=Annales+math%C3%A9matiques+Blaise+Pascal&rft.au=Nadeau%2C+Philippe&rft.au=Josuat-Verg%C3%A8s%2C+Matthieu&rft.date=2024-04-30&rft.pub=Universit%C3%A9+Blaise-Pascal+-+Clermont-Ferrand&rft.issn=1259-1734&rft.eissn=2118-7436&rft.volume=30&rft.issue=2&rft.spage=141&rft.epage=188&rft_id=info:doi/10.5802%2Fambp.420&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03373390v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1259-1734&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1259-1734&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1259-1734&client=summon |