The necessary and sufficient conditions for the qualified convergence of difference methods for approximate solution of the ill-posed Cauchy problem in a Banach space
We study properties of finite-difference methods for approximate solution of the ill-posed Cauchy problem for a homogeneous equation of the first order with a sectorial operator in a Banach space. We obtain the necessary and sufficient conditions for the qualified (with respect to the step of grid)...
Uloženo v:
| Vydáno v: | Russian mathematics Ročník 53; číslo 4; s. 45 - 48 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Heidelberg
Allerton Press, Inc
01.04.2009
|
| Témata: | |
| ISSN: | 1066-369X, 1934-810X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study properties of finite-difference methods for approximate solution of the ill-posed Cauchy problem for a homogeneous equation of the first order with a sectorial operator in a Banach space. We obtain the necessary and sufficient conditions for the qualified (with respect to the step of grid) uniform (on a segment) convergence of approximations to an exact solution of the problem. These conditions represent a priori data about the segment, where a solution exists, or about the sourcewise representation of a certain value of the desired solution. |
|---|---|
| ISSN: | 1066-369X 1934-810X |
| DOI: | 10.3103/S1066369X09040082 |