The necessary and sufficient conditions for the qualified convergence of difference methods for approximate solution of the ill-posed Cauchy problem in a Banach space

We study properties of finite-difference methods for approximate solution of the ill-posed Cauchy problem for a homogeneous equation of the first order with a sectorial operator in a Banach space. We obtain the necessary and sufficient conditions for the qualified (with respect to the step of grid)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Russian mathematics Ročník 53; číslo 4; s. 45 - 48
Hlavní autor: Klyuchev, V. V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Allerton Press, Inc 01.04.2009
Témata:
ISSN:1066-369X, 1934-810X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study properties of finite-difference methods for approximate solution of the ill-posed Cauchy problem for a homogeneous equation of the first order with a sectorial operator in a Banach space. We obtain the necessary and sufficient conditions for the qualified (with respect to the step of grid) uniform (on a segment) convergence of approximations to an exact solution of the problem. These conditions represent a priori data about the segment, where a solution exists, or about the sourcewise representation of a certain value of the desired solution.
ISSN:1066-369X
1934-810X
DOI:10.3103/S1066369X09040082