An accelerated preconditioned primal-dual gradient algorithm for structured nonconvex optimization problems
•An novel accelerated preconditioned primal-dual gradient algorithm for solving nonconvex optimization problems by the conjugate duality theory of nonconvex functions.•Our algorithm only needs to calculate the proximal mapping of the conjugate function which is always convex and lower semicontinuous...
Gespeichert in:
| Veröffentlicht in: | Communications in nonlinear science & numerical simulation Jg. 153; S. 109480 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.02.2026
|
| Schlagworte: | |
| ISSN: | 1007-5704 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •An novel accelerated preconditioned primal-dual gradient algorithm for solving nonconvex optimization problems by the conjugate duality theory of nonconvex functions.•Our algorithm only needs to calculate the proximal mapping of the conjugate function which is always convex and lower semicontinuous and it does not need to calculate the proximal mapping of nonconvex functions. the computation load may be significantly reduced.•Global convergence under Kurdyka-Lojasiewicz condition.•Numerical results illustrate that the proposed algorithm is quite competitive with some existing algorithms.
For a nonconvex problem, the computation of the proximal operator of the nonconvex function is difficult in general. In this paper, based on the conjugate duality theory of nonconvex functions, we present an accelerated preconditioned primal-dual gradient algorithm for a class of nonconvex optimization problems. Compared with the existing algorithms, our algorithm only needs to calculate the proximal mapping of the conjugate function which is always convex and lower semicontinuous and it does not need to calculate the proximal mapping of nonconvex functions. Hence, the computation load may be significantly reduced. We prove that the sequence generated by the proposed algorithm globally converges to a critical point under Kurdyka-Łojasiewicz framework. Furthermore, we derive the convergence rate of the proposed algorithm. Finally, numerical results on signal recovery, image denoising and sparse principal component analysis illustrate that the proposed algorithm is quite competitive with some existing algorithms. |
|---|---|
| AbstractList | •An novel accelerated preconditioned primal-dual gradient algorithm for solving nonconvex optimization problems by the conjugate duality theory of nonconvex functions.•Our algorithm only needs to calculate the proximal mapping of the conjugate function which is always convex and lower semicontinuous and it does not need to calculate the proximal mapping of nonconvex functions. the computation load may be significantly reduced.•Global convergence under Kurdyka-Lojasiewicz condition.•Numerical results illustrate that the proposed algorithm is quite competitive with some existing algorithms.
For a nonconvex problem, the computation of the proximal operator of the nonconvex function is difficult in general. In this paper, based on the conjugate duality theory of nonconvex functions, we present an accelerated preconditioned primal-dual gradient algorithm for a class of nonconvex optimization problems. Compared with the existing algorithms, our algorithm only needs to calculate the proximal mapping of the conjugate function which is always convex and lower semicontinuous and it does not need to calculate the proximal mapping of nonconvex functions. Hence, the computation load may be significantly reduced. We prove that the sequence generated by the proposed algorithm globally converges to a critical point under Kurdyka-Łojasiewicz framework. Furthermore, we derive the convergence rate of the proposed algorithm. Finally, numerical results on signal recovery, image denoising and sparse principal component analysis illustrate that the proposed algorithm is quite competitive with some existing algorithms. |
| ArticleNumber | 109480 |
| Author | Gou, Zhun Long, Xian-Jun Li, Gao-Xi Nie, Jia-Lin Sun, Xiang-Kai |
| Author_xml | – sequence: 1 givenname: Xian-Jun surname: Long fullname: Long, Xian-Jun email: xianjunlong@ctbu.edu.cn – sequence: 2 givenname: Jia-Lin surname: Nie fullname: Nie, Jia-Lin email: niejialin00@163.com – sequence: 3 givenname: Zhun surname: Gou fullname: Gou, Zhun email: 577298380@qq.com – sequence: 4 givenname: Xiang-Kai surname: Sun fullname: Sun, Xiang-Kai email: sunxk@ctbu.edu.cn – sequence: 5 givenname: Gao-Xi surname: Li fullname: Li, Gao-Xi email: ligaoxicn@126.com |
| BookMark | eNp9kM1OwzAQhH0oEi3wBFzyAil27DTpgUNV8SdV4gJna22vi0sSV7ZbAU-P03LmtNrVzGjnm5HJ4Ack5JbROaNscbeb6yEOcV7Rqs6XpWjphEwZpU1ZN1RcklmMO5qVy1pMyedqKEBr7DBAQlPsA2o_GJdcTh1X10NXmgN0xTaAcTikArqtDy599IX1oYgpHHQ6hKzOn2TzEb8Kv0-udz8wxuQQrzrs4zW5sNBFvPmbV-T98eFt_VxuXp9e1qtNqVlDUwkLy5VVVIGworUMKgOglOAcFkLQWnNe4dLUaIG1tEXLNa-05lQDMt4ofkX4OVcHH2NAK081wrdkVI6M5E6eGMmRkTwzyq77swvza0eHQUad62o0LjNJ0nj3r_8XvWB5cg |
| Cites_doi | 10.1137/16M1064064 10.1007/s10898-020-00943-7 10.1287/moor.1100.0449 10.1137/18M1190689 10.1137/14098435X 10.1007/s10589-022-00364-0 10.1109/TIT.2006.871582 10.1016/j.apnum.2023.03.014 10.1016/j.ejor.2025.04.034 10.1137/S0363012998338806 10.1007/s10107-011-0484-9 10.1007/s10851-015-0565-0 10.1109/TCBB.2017.2756628 10.1016/j.apnum.2024.05.006 10.1287/moor.2017.0900 10.1137/140952363 10.1007/s10898-019-00819-5 10.1137/130942954 10.1109/MSP.2018.2877582 10.1007/s10107-013-0701-9 10.1007/s12532-018-0153-6 10.1137/16M1107863 10.1007/s10898-022-01176-6 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cnsns.2025.109480 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| ExternalDocumentID | 10_1016_j_cnsns_2025_109480 S1007570425008895 |
| GroupedDBID | --K --M -01 -0A -0I -0Y -SA -S~ .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 92M 9D9 9DA 9DU AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABAOU ABFNM ABJNI ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACLOT ACNNM ACRPL ACVFH ADBBV ADCNI ADEZE ADGUI ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFUIB AGHFR AGQPQ AGUBO AGYEJ AHJVU AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAJEA CCEZO CCVFK CHBEP CS3 CUBFJ DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA JUIAU KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q-- Q-0 Q38 R2- ROL RPZ RT1 RT9 S.. SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSZ T5K T8Q T8Y U1G U5K UHS ~G- ~HD ~LA AAYXX CITATION |
| ID | FETCH-LOGICAL-c170t-a6f3bfb0ba4f48f1a2daabb433a64405c332e9d5efa1808ef3c32cc30cae137b3 |
| ISSN | 1007-5704 |
| IngestDate | Thu Nov 27 00:59:47 EST 2025 Sat Nov 29 17:14:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Structured nonconvex and nonsmooth problem Global convergence Kurdyka-Łojasiewicz property 90C30 90C33 Primal-dual gradient algorithm 90C26 Conjugate duality theory |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c170t-a6f3bfb0ba4f48f1a2daabb433a64405c332e9d5efa1808ef3c32cc30cae137b3 |
| ParticipantIDs | crossref_primary_10_1016_j_cnsns_2025_109480 elsevier_sciencedirect_doi_10_1016_j_cnsns_2025_109480 |
| PublicationCentury | 2000 |
| PublicationDate | February 2026 2026-02-00 |
| PublicationDateYYYYMMDD | 2026-02-01 |
| PublicationDate_xml | – month: 02 year: 2026 text: February 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Communications in nonlinear science & numerical simulation |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bolte, Sabach, Teboulle (bib0006) 2014; 146 Pock, Sabach (bib0014) 2016; 9 Lou, Zeng, Osher, Xin (bib0011) 2015; 8 Pham, Dao, Amjady, Shah (bib0019) 2025; 326 Wang, Wang (bib0020) 2022; 82 Long, Wang, Li, Li (bib0018) 2024; 202 Beck (bib0023) 2017 Samaria, Harter (bib0031) 1994 Attouch, Bolte, Svaiter (bib0002) 2013; 137 Fu, Huang, Sidiropoulos, Ma (bib0001) 2019; 36 Rockafellar, Wets (bib0024) 1998; vol. 317 Attouch, Bolte, Redont, Soubeyran (bib0004) 2010; 35 Ma, Hu, He, Jiang (bib0007) 2017; 17 Zhu, Li, Liu, Li (bib0013) 2018; 31 Bonnans, Shapiro (bib0027) 2013 Bolte, Sabach, Teboulle (bib0029) 2018; 43 Ochs, Chen, Brox, Pock (bib0009) 2014; 7 Zhao, Dong, Michael, Wang (bib0022) 2022; 84 Berk, Bertsimas (bib0005) 2019; 11 Bot, Csetnek, Nguyen (bib0017) 2019; 29 Donoho (bib0003) 2006; 52 Ochs, Brox, Pock (bib0008) 2015; 53 Yin, Lou, He, Xin (bib0012) 2015; 37 Rockafellar (bib0025) 1970 Pock, Chambolle (bib0028) 2011 Bauschke, Combettes (bib0026) 2017 Tseng (bib0030) 2000; 38 Gao, Cai, Han (bib0015) 2020; 76 Wu, Li, Li, Lim (bib0021) 2021; 79 Pan, M (bib0010) 2018; 39 Wang, Han (bib0016) 2023; 189 Pan (10.1016/j.cnsns.2025.109480_bib0010) 2018; 39 Pham (10.1016/j.cnsns.2025.109480_bib0019) 2025; 326 Berk (10.1016/j.cnsns.2025.109480_bib0005) 2019; 11 Bonnans (10.1016/j.cnsns.2025.109480_bib0027) 2013 Wu (10.1016/j.cnsns.2025.109480_bib0021) 2021; 79 Wang (10.1016/j.cnsns.2025.109480_bib0016) 2023; 189 Tseng (10.1016/j.cnsns.2025.109480_bib0030) 2000; 38 Yin (10.1016/j.cnsns.2025.109480_bib0012) 2015; 37 Pock (10.1016/j.cnsns.2025.109480_bib0028) 2011 Pock (10.1016/j.cnsns.2025.109480_bib0014) 2016; 9 Rockafellar (10.1016/j.cnsns.2025.109480_bib0024) 1998; vol. 317 Bolte (10.1016/j.cnsns.2025.109480_bib0029) 2018; 43 Gao (10.1016/j.cnsns.2025.109480_bib0015) 2020; 76 Ochs (10.1016/j.cnsns.2025.109480_bib0008) 2015; 53 Fu (10.1016/j.cnsns.2025.109480_bib0001) 2019; 36 Zhu (10.1016/j.cnsns.2025.109480_bib0013) 2018; 31 Zhao (10.1016/j.cnsns.2025.109480_bib0022) 2022; 84 Rockafellar (10.1016/j.cnsns.2025.109480_bib0025) 1970 Lou (10.1016/j.cnsns.2025.109480_bib0011) 2015; 8 Bauschke (10.1016/j.cnsns.2025.109480_bib0026) 2017 Ochs (10.1016/j.cnsns.2025.109480_bib0009) 2014; 7 Ma (10.1016/j.cnsns.2025.109480_bib0007) 2017; 17 Wang (10.1016/j.cnsns.2025.109480_bib0020) 2022; 82 Bolte (10.1016/j.cnsns.2025.109480_bib0006) 2014; 146 Attouch (10.1016/j.cnsns.2025.109480_bib0004) 2010; 35 Attouch (10.1016/j.cnsns.2025.109480_bib0002) 2013; 137 Beck (10.1016/j.cnsns.2025.109480_bib0023) 2017 Bot (10.1016/j.cnsns.2025.109480_bib0017) 2019; 29 Long (10.1016/j.cnsns.2025.109480_bib0018) 2024; 202 Donoho (10.1016/j.cnsns.2025.109480_bib0003) 2006; 52 Samaria (10.1016/j.cnsns.2025.109480_bib0031) 1994 |
| References_xml | – volume: 8 start-page: 1798 year: 2015 end-page: 1823 ident: bib0011 article-title: A weighted difference of anisotropic and isotropic total variation model for image processing publication-title: SIAM J Imag Sci – volume: 76 start-page: 863 year: 2020 end-page: 887 ident: bib0015 article-title: A Gauss-Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems publication-title: J Global Optim – volume: 9 start-page: 1756 year: 2016 end-page: 1787 ident: bib0014 article-title: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems publication-title: SIAM J Imag Sci – volume: 189 start-page: 66 year: 2023 end-page: 87 ident: bib0016 article-title: A generalized inertial proximal alternating linearized minimization method for nonconvex nonsmooth problems publication-title: Appl Numer Math – volume: vol. 317 year: 1998 ident: bib0024 – volume: 36 start-page: 59 year: 2019 end-page: 80 ident: bib0001 article-title: Nonnegative matrix factorization for signal and data analytics: identifiability, algorithms, and applications publication-title: IEEE Signal Process Mag – volume: 79 start-page: 617 year: 2021 end-page: 644 ident: bib0021 article-title: Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems publication-title: J Global Optim – start-page: 1762 year: 2011 end-page: 1769 ident: bib0028 article-title: Diagonal preconditioning for first order primal-dual algorithms in convex optimization publication-title: 2011 International conference on computer vision – volume: 202 start-page: 209 year: 2024 end-page: 221 ident: bib0018 article-title: A Bregman proximal subgradient algorithm for nonconvex and nonsmooth fractional optimization problems publication-title: Appl Numer Math – volume: 43 start-page: 1210 year: 2018 end-page: 1232 ident: bib0029 article-title: Nonconvex Lagrangian-based optimization: monitoring schemes and global convergence publication-title: Math Oper Res – year: 1970 ident: bib0025 article-title: Convex analysis – volume: 11 start-page: 381 year: 2019 end-page: 420 ident: bib0005 article-title: Certifiably optimal sparse principal component analysis publication-title: Math Program Comput – volume: 146 start-page: 459 year: 2014 end-page: 494 ident: bib0006 article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems publication-title: Math Program – year: 2013 ident: bib0027 article-title: Perturbation analysis of optimization problems – volume: 39 start-page: 856 year: 2018 end-page: 875 ident: bib0010 article-title: Ng orthogonal nonnegative matrix factorization by sparsity and nuclear norm optimization publication-title: SIAM J Matrix Anal Appl – volume: 53 start-page: 171 year: 2015 end-page: 181 ident: bib0008 article-title: iPiasco: inertial proximal algorithm for strongly convex optimization publication-title: J Math Imag Vision – volume: 35 start-page: 438 year: 2010 end-page: 457 ident: bib0004 article-title: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality publication-title: Math Oper Res – volume: 82 start-page: 441 year: 2022 end-page: 463 ident: bib0020 article-title: Malitsky-Tam forward-reflected-backward splitting method for nonconvex minimization problems publication-title: Comput Optim Appl – year: 2017 ident: bib0023 article-title: First-order methods in optimization – volume: 137 start-page: 91 year: 2013 end-page: 129 ident: bib0002 article-title: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods publication-title: Math Program – volume: 38 start-page: 431 year: 2000 end-page: 446 ident: bib0030 article-title: A modified forward-backward splitting method for maximal monotone mappings publication-title: SIAM J Control Optim – volume: 7 start-page: 1388 year: 2014 end-page: 1419 ident: bib0009 article-title: IPiano: inertial proximal algorithm for nonconvex optimization publication-title: SIAM J Imag Sci – volume: 29 start-page: 1300 year: 2019 end-page: 1328 ident: bib0017 article-title: A proximal minimization algorithm for structured nonconvex and nonsmooth problems publication-title: SIAM J Optim – year: 2017 ident: bib0026 article-title: Convex analysis and monotone operator theory in hilbert spaces – year: 1994 ident: bib0031 article-title: Parameterisation of a stochastic model for human face identification publication-title: Proceedings of 1994 IEEE workshop on applications of computer vision – volume: 17 start-page: 788 year: 2017 end-page: 795 ident: bib0007 article-title: Clustering and integrating of heterogeneous microbiome data by joint symmetric nonnegative matrix factorization with Laplacian regularization publication-title: IEEE/ACM Trans Comput Biol Bioinf – volume: 84 start-page: 941 year: 2022 end-page: 966 ident: bib0022 article-title: Two-step inertial Bregman alternating minimization algorithm for nonconvex and nonsmooth problems publication-title: J Global Optim – volume: 326 start-page: 42 year: 2025 end-page: 53 ident: bib0019 article-title: A proximal splitting algorithm for generalized DC programming with applications in signal recovery publication-title: Eur J Oper Res – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: bib0003 article-title: Compressed sensing publication-title: IEEE Trans Inf Theory – volume: 37 start-page: 536 year: 2015 end-page: A563 ident: bib0012 article-title: Minimization of publication-title: SIAM J Sci Comput – volume: 31 start-page: 5160 year: 2018 end-page: 5170 ident: bib0013 article-title: Dropping symmetry for fast symmetric nonnegative matrix factorization publication-title: Adv Neural Inf Process Syst – volume: 9 start-page: 1756 issue: 4 year: 2016 ident: 10.1016/j.cnsns.2025.109480_bib0014 article-title: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems publication-title: SIAM J Imag Sci doi: 10.1137/16M1064064 – volume: 79 start-page: 617 issue: 3 year: 2021 ident: 10.1016/j.cnsns.2025.109480_bib0021 article-title: Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems publication-title: J Global Optim doi: 10.1007/s10898-020-00943-7 – volume: 35 start-page: 438 issue: 2 year: 2010 ident: 10.1016/j.cnsns.2025.109480_bib0004 article-title: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality publication-title: Math Oper Res doi: 10.1287/moor.1100.0449 – volume: 31 start-page: 5160 year: 2018 ident: 10.1016/j.cnsns.2025.109480_bib0013 article-title: Dropping symmetry for fast symmetric nonnegative matrix factorization publication-title: Adv Neural Inf Process Syst – volume: 29 start-page: 1300 issue: 2 year: 2019 ident: 10.1016/j.cnsns.2025.109480_bib0017 article-title: A proximal minimization algorithm for structured nonconvex and nonsmooth problems publication-title: SIAM J Optim doi: 10.1137/18M1190689 – year: 2017 ident: 10.1016/j.cnsns.2025.109480_bib0026 – volume: 8 start-page: 1798 issue: 3 year: 2015 ident: 10.1016/j.cnsns.2025.109480_bib0011 article-title: A weighted difference of anisotropic and isotropic total variation model for image processing publication-title: SIAM J Imag Sci doi: 10.1137/14098435X – volume: vol. 317 year: 1998 ident: 10.1016/j.cnsns.2025.109480_bib0024 – year: 2013 ident: 10.1016/j.cnsns.2025.109480_bib0027 – volume: 82 start-page: 441 issue: 2 year: 2022 ident: 10.1016/j.cnsns.2025.109480_bib0020 article-title: Malitsky-Tam forward-reflected-backward splitting method for nonconvex minimization problems publication-title: Comput Optim Appl doi: 10.1007/s10589-022-00364-0 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 10.1016/j.cnsns.2025.109480_bib0003 article-title: Compressed sensing publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2006.871582 – volume: 189 start-page: 66 year: 2023 ident: 10.1016/j.cnsns.2025.109480_bib0016 article-title: A generalized inertial proximal alternating linearized minimization method for nonconvex nonsmooth problems publication-title: Appl Numer Math doi: 10.1016/j.apnum.2023.03.014 – volume: 326 start-page: 42 year: 2025 ident: 10.1016/j.cnsns.2025.109480_bib0019 article-title: A proximal splitting algorithm for generalized DC programming with applications in signal recovery publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2025.04.034 – year: 1994 ident: 10.1016/j.cnsns.2025.109480_bib0031 article-title: Parameterisation of a stochastic model for human face identification – volume: 38 start-page: 431 issue: 2 year: 2000 ident: 10.1016/j.cnsns.2025.109480_bib0030 article-title: A modified forward-backward splitting method for maximal monotone mappings publication-title: SIAM J Control Optim doi: 10.1137/S0363012998338806 – volume: 137 start-page: 91 issue: 1 year: 2013 ident: 10.1016/j.cnsns.2025.109480_bib0002 article-title: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods publication-title: Math Program doi: 10.1007/s10107-011-0484-9 – year: 1970 ident: 10.1016/j.cnsns.2025.109480_bib0025 – volume: 53 start-page: 171 year: 2015 ident: 10.1016/j.cnsns.2025.109480_bib0008 article-title: iPiasco: inertial proximal algorithm for strongly convex optimization publication-title: J Math Imag Vision doi: 10.1007/s10851-015-0565-0 – volume: 17 start-page: 788 issue: 3 year: 2017 ident: 10.1016/j.cnsns.2025.109480_bib0007 article-title: Clustering and integrating of heterogeneous microbiome data by joint symmetric nonnegative matrix factorization with Laplacian regularization publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2017.2756628 – volume: 202 start-page: 209 year: 2024 ident: 10.1016/j.cnsns.2025.109480_bib0018 article-title: A Bregman proximal subgradient algorithm for nonconvex and nonsmooth fractional optimization problems publication-title: Appl Numer Math doi: 10.1016/j.apnum.2024.05.006 – volume: 43 start-page: 1210 issue: 4 year: 2018 ident: 10.1016/j.cnsns.2025.109480_bib0029 article-title: Nonconvex Lagrangian-based optimization: monitoring schemes and global convergence publication-title: Math Oper Res doi: 10.1287/moor.2017.0900 – volume: 37 start-page: 536 issue: 1 year: 2015 ident: 10.1016/j.cnsns.2025.109480_bib0012 article-title: Minimization of l_1−2 for compressed sensing publication-title: SIAM J Sci Comput doi: 10.1137/140952363 – volume: 76 start-page: 863 year: 2020 ident: 10.1016/j.cnsns.2025.109480_bib0015 article-title: A Gauss-Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems publication-title: J Global Optim doi: 10.1007/s10898-019-00819-5 – start-page: 1762 year: 2011 ident: 10.1016/j.cnsns.2025.109480_bib0028 article-title: Diagonal preconditioning for first order primal-dual algorithms in convex optimization – volume: 7 start-page: 1388 issue: 2 year: 2014 ident: 10.1016/j.cnsns.2025.109480_bib0009 article-title: IPiano: inertial proximal algorithm for nonconvex optimization publication-title: SIAM J Imag Sci doi: 10.1137/130942954 – volume: 36 start-page: 59 issue: 2 year: 2019 ident: 10.1016/j.cnsns.2025.109480_bib0001 article-title: Nonnegative matrix factorization for signal and data analytics: identifiability, algorithms, and applications publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2018.2877582 – volume: 146 start-page: 459 issue: 1 year: 2014 ident: 10.1016/j.cnsns.2025.109480_bib0006 article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems publication-title: Math Program doi: 10.1007/s10107-013-0701-9 – volume: 11 start-page: 381 issue: 3 year: 2019 ident: 10.1016/j.cnsns.2025.109480_bib0005 article-title: Certifiably optimal sparse principal component analysis publication-title: Math Program Comput doi: 10.1007/s12532-018-0153-6 – year: 2017 ident: 10.1016/j.cnsns.2025.109480_bib0023 – volume: 39 start-page: 856 issue: 2 year: 2018 ident: 10.1016/j.cnsns.2025.109480_bib0010 article-title: Ng orthogonal nonnegative matrix factorization by sparsity and nuclear norm optimization publication-title: SIAM J Matrix Anal Appl doi: 10.1137/16M1107863 – volume: 84 start-page: 941 year: 2022 ident: 10.1016/j.cnsns.2025.109480_bib0022 article-title: Two-step inertial Bregman alternating minimization algorithm for nonconvex and nonsmooth problems publication-title: J Global Optim doi: 10.1007/s10898-022-01176-6 |
| SSID | ssj0016954 |
| Score | 2.4515216 |
| Snippet | •An novel accelerated preconditioned primal-dual gradient algorithm for solving nonconvex optimization problems by the conjugate duality theory of nonconvex... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 109480 |
| SubjectTerms | Conjugate duality theory Global convergence Kurdyka-Łojasiewicz property Primal-dual gradient algorithm Structured nonconvex and nonsmooth problem |
| Title | An accelerated preconditioned primal-dual gradient algorithm for structured nonconvex optimization problems |
| URI | https://dx.doi.org/10.1016/j.cnsns.2025.109480 |
| Volume | 153 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1007-5704 databaseCode: AIEXJ dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016954 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBHLAvKBWwhK4jiPY4WWR0EV0i5Sb5HjJN3stu6qaVb9E_znHT-bpQgBEpcotWInmvk6Htsz3yD0pgFzyHhA_QjmEj-OWeKXcQX_qzTOCKlgzueZKjaRTqfZbJZ_G41-2FyY60UqRLbd5lf_VdXQBsqWqbN_oW43KDTAPSgdrqB2uP6R4sfCY5zDbCJJIBQJACx5K01JJH-2S7bwVQbWfK3iveSm73y1bjfnSxV0qCllexmYLlZChaVvvRWYlqXJ2fRMFZpu6NneyjRRQbZCs3CwtWdzhyTMRK_PiBZe1y5N7TAXFWTig2eAWX_Su_apPkSZtMz_2rrWj6teHa2c7x487YXtP_e_sHa4pxG5MGi70baXbKNss9xVpamuVuyMt6Ya3psI9J7ExTsuOiFZ2SMqibNiXTXqJ4btUzmyHBjcQRn1Re-gwyilORjJw_Hnk9nEHUsluSqr577E0lipgMG9V_3a1Rm4L2cP0X2z7sBjjZdHaFSLx-iBWYNgY-G7J-hyLPAAPvg2fPAAPtjCBzv4YIAP3sEHO_jgIXywhc9T9P3Dydn7T74pyOHzMA02PksaUjZlULK4ibMmZFHFWFnGhDBwqwPKCYnqvKJ1w8IsyOqGcBJxTgLO6pCkJXmGDuDN9XOEaR00NMx4GWRVTIOmTDjnMETDahg4qo_QWyu74krzrhQ2IPGiUKIupKgLLeojlFj5FgbT2iUsABC_6_jiXzseo3s75L5EByDb-hW6y683bbd-bYBzAzlgnJw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accelerated+preconditioned+primal-dual+gradient+algorithm+for+structured+nonconvex+optimization+problems&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Long%2C+Xian-Jun&rft.au=Nie%2C+Jia-Lin&rft.au=Gou%2C+Zhun&rft.au=Sun%2C+Xiang-Kai&rft.date=2026-02-01&rft.pub=Elsevier+B.V&rft.issn=1007-5704&rft.volume=153&rft_id=info:doi/10.1016%2Fj.cnsns.2025.109480&rft.externalDocID=S1007570425008895 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon |