Multivariate physics-informed convolutional autoencoder for anomaly detection in power distribution systems with widespread deployment of distributed energy resources

Despite the relentless progress of deep learning models in analyzing the system conditions under cyber-physical events, their abilities are limited in the power system domain due to data availability issues, cost of data acquisition, and lack of interpretation and extrapolation of the data beyond th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable Energy, Grids and Networks Jg. 44; S. 102022
Hauptverfasser: Jabbari Zideh, Mehdi, Khushalani Solanki, Sarika
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2025
Schlagworte:
ISSN:2352-4677, 2352-4677
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!