Finding the minimum k-weighted dominating sets using heuristic algorithms
In this work, we propose, analyze, and solve a generalization of the k-dominating set problem in a graph, when we consider a weighted graph. Given a graph with weights in its edges, a set of vertices is a k-weighted dominating set if for every vertex outside the set, the sum of the weights from it t...
Gespeichert in:
| Veröffentlicht in: | Mathematics and computers in simulation Jg. 228; S. 485 - 497 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.02.2025
|
| Schlagworte: | |
| ISSN: | 0378-4754 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this work, we propose, analyze, and solve a generalization of the k-dominating set problem in a graph, when we consider a weighted graph. Given a graph with weights in its edges, a set of vertices is a k-weighted dominating set if for every vertex outside the set, the sum of the weights from it to its adjacent vertices in the set is bigger than or equal to k. The k-weighted domination number is the minimum cardinality among all k-weighted dominating sets. Since the problem of finding the k-weighted domination number is NP-hard, we have proposed several problem-adapted construction and reconstruction techniques and embedded them in an Iterated Greedy algorithm. The resulting sixteen variants of the Iterated Greedy algorithm have been compared with an exact algorithm. Computational results show that the proposal is able to find optimal or near-optimal solutions within a short computational time. To the best of our knowledge, the k-weighted dominating set problem has never been studied before in the literature and, therefore, there is no other state-of-the-art algorithm to solve it. We have also included a comparison with a particular case of our problem, the minimum dominating set problem and, on average, we achieve same quality results within around 50% of computation time.
•We generalize the k-dominating set problem considering weighted graphs (k-WDSP).•We solve the problem using several variants of an Iterated Greedy (IG) algorithm.•Different problem-based destruction and reconstruction procedures have been proposed.•We compare the resulting 16 variants of an Iterated Greedy algorithm.•We compare the best variant of the IG algorithm with an exact procedure. |
|---|---|
| AbstractList | In this work, we propose, analyze, and solve a generalization of the k-dominating set problem in a graph, when we consider a weighted graph. Given a graph with weights in its edges, a set of vertices is a k-weighted dominating set if for every vertex outside the set, the sum of the weights from it to its adjacent vertices in the set is bigger than or equal to k. The k-weighted domination number is the minimum cardinality among all k-weighted dominating sets. Since the problem of finding the k-weighted domination number is NP-hard, we have proposed several problem-adapted construction and reconstruction techniques and embedded them in an Iterated Greedy algorithm. The resulting sixteen variants of the Iterated Greedy algorithm have been compared with an exact algorithm. Computational results show that the proposal is able to find optimal or near-optimal solutions within a short computational time. To the best of our knowledge, the k-weighted dominating set problem has never been studied before in the literature and, therefore, there is no other state-of-the-art algorithm to solve it. We have also included a comparison with a particular case of our problem, the minimum dominating set problem and, on average, we achieve same quality results within around 50% of computation time.
•We generalize the k-dominating set problem considering weighted graphs (k-WDSP).•We solve the problem using several variants of an Iterated Greedy (IG) algorithm.•Different problem-based destruction and reconstruction procedures have been proposed.•We compare the resulting 16 variants of an Iterated Greedy algorithm.•We compare the best variant of the IG algorithm with an exact procedure. |
| Author | Barrena, E. López-Sánchez, A.D. Zamudio, J.A. Bermudo, S. Hernández-Díaz, A.G. |
| Author_xml | – sequence: 1 givenname: E. orcidid: 0000-0002-8936-725X surname: Barrena fullname: Barrena, E. email: ebarrena@upo.es organization: Department of Economics, Quantitative Methods, and Economic History. Universidad Pablo de Olavide, ES-41013, Seville, Spain – sequence: 2 givenname: S. surname: Bermudo fullname: Bermudo, S. organization: Department of Economics, Quantitative Methods, and Economic History. Universidad Pablo de Olavide, ES-41013, Seville, Spain – sequence: 3 givenname: A.G. surname: Hernández-Díaz fullname: Hernández-Díaz, A.G. organization: Department of Economics, Quantitative Methods, and Economic History. Universidad Pablo de Olavide, ES-41013, Seville, Spain – sequence: 4 givenname: A.D. orcidid: 0000-0003-3022-3865 surname: López-Sánchez fullname: López-Sánchez, A.D. organization: Department of Economics, Quantitative Methods, and Economic History. Universidad Pablo de Olavide, ES-41013, Seville, Spain – sequence: 5 givenname: J.A. orcidid: 0000-0002-5025-7424 surname: Zamudio fullname: Zamudio, J.A. organization: CISPA Helmholtz Center for Information Security, Saarbrücken, Germany |
| BookMark | eNp9kMFOwzAQRH0oEm3hDzjkBxLWiRM7FyRUUahUiQucLcfeJC51gmwHxN-TqJw5zWi0M1q9DVkN44CE3FHIKNDq_pQ5FfXoshxylkGdAYUVWUPBRcp4ya7JJoQTAMy-XJPD3g7GDl0Se0ycHaybXPKRfqPt-ogmMeMcqrhcBIwhmcJie5y8DdHqRJ270dvYu3BDrlp1Dnj7p1vyvn96272kx9fnw-7xmGrKIaaUCaOw0RxVUzBQPBdGgFa8ARQaWywLk0MD3LSKVnWJohEoCsOwao3O62JL2GVX-zEEj6389NYp_yMpyAWBPMkLArkgkFDLGcFce7jUcP7ty6KXQVscNBrrUUdpRvv_wC-9lG0s |
| Cites_doi | 10.3934/mbe.2022337 10.1016/j.ymeth.2015.12.017 10.7151/dmgt.2016 10.1016/j.ins.2017.10.033 10.1016/j.cor.2023.106224 10.1002/jgt.3190130610 10.1016/j.future.2018.06.010 10.1016/j.ins.2017.05.052 10.1016/j.asoc.2012.07.009 10.1016/j.cor.2020.105157 10.1002/net.3230070305 10.3390/electronics8121440 10.1016/S0012-365X(03)00203-6 10.1016/j.asoc.2021.107659 10.1016/j.matcom.2022.12.018 10.1016/j.aml.2011.01.013 10.1016/j.dam.2008.10.011 10.1002/1097-0118(200009)35:1<21::AID-JGT3>3.0.CO;2-F 10.1186/s40649-020-00078-5 10.1007/s10587-010-0019-1 10.1016/j.dam.2018.05.025 10.1287/opre.39.1.100 10.1002/net.3230100304 10.1002/jgt.3190090414 10.1017/S0963548300002042 10.1016/j.ejor.2005.12.009 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.matcom.2024.09.010 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 497 |
| ExternalDocumentID | 10_1016_j_matcom_2024_09_010 S0378475424003653 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c170t-148daebc7eab340a728d80ca7b0e8cefe53d20b07dfa1695e8b8e83d4e6fdc293 |
| ISSN | 0378-4754 |
| IngestDate | Sat Nov 29 05:44:59 EST 2025 Sat Oct 26 15:44:08 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Iterated greedy algorithm Dominating set Metaheuristic algorithm Edge-weight |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c170t-148daebc7eab340a728d80ca7b0e8cefe53d20b07dfa1695e8b8e83d4e6fdc293 |
| ORCID | 0000-0002-5025-7424 0000-0002-8936-725X 0000-0003-3022-3865 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.matcom.2024.09.010 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_matcom_2024_09_010 elsevier_sciencedirect_doi_10_1016_j_matcom_2024_09_010 |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Mathematics and computers in simulation |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bermudo, Cabrera Martínez, Hernández Mira, Sigarreta (b16) 2019; 263 Sun, Ma (b1) 2017; 414 Sánchez-Oro, Duarte (b30) 2018; 88 Hansberg, Volkmann (b14) 2009; 157 Lozano, Rodriguez-Tello (b29) 2023; 155 Pérez-Peló, Sánchez-Oro, López-Sánchez, Duarte (b32) 2019; 8 Ding-Zhu Du, Thai, Zhu (b2) 2016; vol. 3841 Potluri, Singh (b20) 2013; 13 Haynes, Hedetniemi, Slater (b7) 1998 Nacher, Akutsu (b3) 2016; 102 Álvarez-Miranda, Sinnl (b33) 2021; 127 Quintana, Martin-Santamaria, Sanchez-Oro, Duarte (b31) 2021; 111 Favaron (b12) 1988; 25 Potluri, Singh (b19) 2011 Bermudo, Higuita, Rada (b26) 2022; 19 Ruiz, Stützle (b28) 2007; 177 McCuaig, Shepherd (b17) 1989; 13 Hooker, Garfinkel, Chen (b4) 1991; 39 Bermudo, Hernández-Gómez, Sigarreta (b15) 2018; 38 Chalupa (b21) 2018; 426 Volkmann (b24) 2010; 60 Cockayne, Dawes, Hedetniemi (b10) 1980; 10 Cockayne, Hedetniemi (b5) 1977; 7 Haynes, Hedetniemi, Henning (b8) 2021 Li (b13) 2004; 274 Henning (b11) 2000; 35 Casado, Bermudo, López-Sánchez, Sánchez-Oro (b22) 2023; 207 DeLaViña, Goddard, Henning, Pepper, Vaughan (b25) 2011; 24 Nguyen, Hà, Nguyen, Tran (b27) 2020; 7 Haynes, Hedetniemi, Slater (b6) 1998 Henning, Yeo (b9) 2013 Reed (b18) 1996; 5 Cockayne, Gamble, Shepherd (b23) 1985; 9 McCuaig (10.1016/j.matcom.2024.09.010_b17) 1989; 13 Cockayne (10.1016/j.matcom.2024.09.010_b23) 1985; 9 Casado (10.1016/j.matcom.2024.09.010_b22) 2023; 207 DeLaViña (10.1016/j.matcom.2024.09.010_b25) 2011; 24 Cockayne (10.1016/j.matcom.2024.09.010_b10) 1980; 10 Quintana (10.1016/j.matcom.2024.09.010_b31) 2021; 111 Bermudo (10.1016/j.matcom.2024.09.010_b16) 2019; 263 Haynes (10.1016/j.matcom.2024.09.010_b6) 1998 Favaron (10.1016/j.matcom.2024.09.010_b12) 1988; 25 Sun (10.1016/j.matcom.2024.09.010_b1) 2017; 414 Chalupa (10.1016/j.matcom.2024.09.010_b21) 2018; 426 Bermudo (10.1016/j.matcom.2024.09.010_b15) 2018; 38 Henning (10.1016/j.matcom.2024.09.010_b11) 2000; 35 Ding-Zhu Du (10.1016/j.matcom.2024.09.010_b2) 2016; vol. 3841 Reed (10.1016/j.matcom.2024.09.010_b18) 1996; 5 Haynes (10.1016/j.matcom.2024.09.010_b8) 2021 Volkmann (10.1016/j.matcom.2024.09.010_b24) 2010; 60 Hooker (10.1016/j.matcom.2024.09.010_b4) 1991; 39 Pérez-Peló (10.1016/j.matcom.2024.09.010_b32) 2019; 8 Bermudo (10.1016/j.matcom.2024.09.010_b26) 2022; 19 Lozano (10.1016/j.matcom.2024.09.010_b29) 2023; 155 Potluri (10.1016/j.matcom.2024.09.010_b19) 2011 Cockayne (10.1016/j.matcom.2024.09.010_b5) 1977; 7 Ruiz (10.1016/j.matcom.2024.09.010_b28) 2007; 177 Nacher (10.1016/j.matcom.2024.09.010_b3) 2016; 102 Sánchez-Oro (10.1016/j.matcom.2024.09.010_b30) 2018; 88 Álvarez-Miranda (10.1016/j.matcom.2024.09.010_b33) 2021; 127 Henning (10.1016/j.matcom.2024.09.010_b9) 2013 Haynes (10.1016/j.matcom.2024.09.010_b7) 1998 Potluri (10.1016/j.matcom.2024.09.010_b20) 2013; 13 Li (10.1016/j.matcom.2024.09.010_b13) 2004; 274 Hansberg (10.1016/j.matcom.2024.09.010_b14) 2009; 157 Nguyen (10.1016/j.matcom.2024.09.010_b27) 2020; 7 |
| References_xml | – volume: 7 start-page: 247 year: 1977 end-page: 261 ident: b5 article-title: Towards a theory of domination in graphs publication-title: Networks – start-page: 97 year: 2011 end-page: 104 ident: b19 article-title: Two hybrid meta-heuristic approaches for minimum dominating set problem – year: 1998 ident: b7 article-title: Fundamentals of Domination in Graphs – volume: 10 start-page: 211 year: 1980 end-page: 219 ident: b10 article-title: Total domination in graphs publication-title: Networks – volume: 111 year: 2021 ident: b31 article-title: Solving the regenerator location problem with an iterated greedy approach publication-title: Appl. Soft Comput. – volume: 426 start-page: 101 year: 2018 end-page: 116 ident: b21 article-title: An order-based algorithm for minimum dominating set with application in graph mining publication-title: Inform. Sci. – volume: 155 year: 2023 ident: b29 article-title: Population-based iterated greedy algorithm for the S-labeling problem publication-title: Comput. Oper. Res. – volume: 35 start-page: 21 year: 2000 end-page: 45 ident: b11 article-title: Total domination in graphs publication-title: J. Graph Theory – volume: 7 start-page: 4 year: 2020 ident: b27 article-title: Solving the k-dominating set problem on very large-scale networks publication-title: Comput. Soc. Netw. – volume: 38 start-page: 301 year: 2018 end-page: 317 ident: b15 article-title: On the total publication-title: Discuss. Math. Graph Theory – volume: 13 start-page: 76 year: 2013 end-page: 88 ident: b20 article-title: Hybrid metaheuristic algorithms for minimum weight dominating set publication-title: Appl. Soft Comput. – year: 2021 ident: b8 article-title: Structures of Domination in Graphs – volume: 157 start-page: 1634 year: 2009 end-page: 1639 ident: b14 article-title: Upper bounds on the k -domination number and the k -Roman domination number publication-title: Discrete Appl. Math. – volume: 263 start-page: 42 year: 2019 end-page: 50 ident: b16 article-title: On the global total publication-title: Discrete Appl. Math. – volume: 177 start-page: 2033 year: 2007 end-page: 2049 ident: b28 article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem publication-title: European J. Oper. Res. – volume: 414 start-page: 247 year: 2017 end-page: 259 ident: b1 article-title: Dominating communities for hierarchical control of complex networks publication-title: Inform. Sci. – year: 2013 ident: b9 article-title: Total Domination in Graphs – volume: 5 start-page: 277 year: 1996 end-page: 295 ident: b18 article-title: Paths, stars, and the number three publication-title: Combin. Probab. Comput. – volume: 13 start-page: 749 year: 1989 end-page: 762 ident: b17 article-title: Domination in graphs of minimum degree two publication-title: J. Graph Theory – volume: 39 start-page: 100 year: 1991 end-page: 118 ident: b4 article-title: Finite dominating sets for network location problems publication-title: Oper. Res. – volume: vol. 3841 start-page: 13 year: 2016 end-page: 24 ident: b2 article-title: Strongly connected dominating sets in wireless sensor networks with unidirectional links publication-title: Proceedings of AP-Web – volume: 127 year: 2021 ident: b33 article-title: Exact and heuristic algorithms for the weighted total domination problem publication-title: Comput. Oper. Res. – year: 1998 ident: b6 article-title: Domination in Graphs: Advanced Topics – volume: 19 start-page: 7138 year: 2022 end-page: 7155 ident: b26 article-title: -Domination and total publication-title: Math. Biosci. Eng. – volume: 102 start-page: 57 year: 2016 end-page: 63 ident: b3 article-title: Minimum dominating set-based methods for analyzing biological networks publication-title: Methods – volume: 25 start-page: 159 year: 1988 end-page: 167 ident: b12 article-title: K -domination and k -independence in graphs publication-title: Ars Combin. – volume: 207 start-page: 41 year: 2023 end-page: 58 ident: b22 article-title: An iterated greedy algorithm for finding the minimum dominating set in graphs publication-title: Math. Comput. Simulation – volume: 8 year: 2019 ident: b32 article-title: A multi-objective parallel iterated greedy for solving the p-center and p-dispersion problem publication-title: Electronics – volume: 274 start-page: 303 year: 2004 end-page: 310 ident: b13 article-title: On connected k -domination numbers of graphs publication-title: Discrete Math. – volume: 24 start-page: 996 year: 2011 end-page: 998 ident: b25 article-title: Bounds on the k -domination number of a graph publication-title: Appl. Math. Lett. – volume: 9 start-page: 533 year: 1985 end-page: 534 ident: b23 article-title: An upper bound for the k -domination number of a graph publication-title: J. Graph Theory – volume: 88 start-page: 785 year: 2018 end-page: 791 ident: b30 article-title: Iterated Greedy algorithm for performing community detection in social networks publication-title: Future Gener. Comput. Syst. – volume: 60 start-page: 77 year: 2010 end-page: 83 ident: b24 article-title: A bound on the k -domination number of a graph publication-title: Czechoslovak Math. J. – volume: 19 start-page: 7138 issue: 7 year: 2022 ident: 10.1016/j.matcom.2024.09.010_b26 article-title: k-Domination and total k-domination numbers in catacondensed hexagonal systems publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2022337 – volume: 102 start-page: 57 year: 2016 ident: 10.1016/j.matcom.2024.09.010_b3 article-title: Minimum dominating set-based methods for analyzing biological networks publication-title: Methods doi: 10.1016/j.ymeth.2015.12.017 – volume: 38 start-page: 301 issue: 1 year: 2018 ident: 10.1016/j.matcom.2024.09.010_b15 article-title: On the total k-domination in graphs publication-title: Discuss. Math. Graph Theory doi: 10.7151/dmgt.2016 – volume: 426 start-page: 101 year: 2018 ident: 10.1016/j.matcom.2024.09.010_b21 article-title: An order-based algorithm for minimum dominating set with application in graph mining publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.10.033 – volume: 155 year: 2023 ident: 10.1016/j.matcom.2024.09.010_b29 article-title: Population-based iterated greedy algorithm for the S-labeling problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2023.106224 – volume: 13 start-page: 749 year: 1989 ident: 10.1016/j.matcom.2024.09.010_b17 article-title: Domination in graphs of minimum degree two publication-title: J. Graph Theory doi: 10.1002/jgt.3190130610 – volume: 25 start-page: 159 year: 1988 ident: 10.1016/j.matcom.2024.09.010_b12 article-title: K -domination and k -independence in graphs publication-title: Ars Combin. – volume: 88 start-page: 785 year: 2018 ident: 10.1016/j.matcom.2024.09.010_b30 article-title: Iterated Greedy algorithm for performing community detection in social networks publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.06.010 – volume: 414 start-page: 247 year: 2017 ident: 10.1016/j.matcom.2024.09.010_b1 article-title: Dominating communities for hierarchical control of complex networks publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.05.052 – volume: 13 start-page: 76 year: 2013 ident: 10.1016/j.matcom.2024.09.010_b20 article-title: Hybrid metaheuristic algorithms for minimum weight dominating set publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.07.009 – volume: 127 year: 2021 ident: 10.1016/j.matcom.2024.09.010_b33 article-title: Exact and heuristic algorithms for the weighted total domination problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2020.105157 – volume: 7 start-page: 247 issue: 3 year: 1977 ident: 10.1016/j.matcom.2024.09.010_b5 article-title: Towards a theory of domination in graphs publication-title: Networks doi: 10.1002/net.3230070305 – volume: 8 issue: 12 year: 2019 ident: 10.1016/j.matcom.2024.09.010_b32 article-title: A multi-objective parallel iterated greedy for solving the p-center and p-dispersion problem publication-title: Electronics doi: 10.3390/electronics8121440 – volume: 274 start-page: 303 issue: 1–3 year: 2004 ident: 10.1016/j.matcom.2024.09.010_b13 article-title: On connected k -domination numbers of graphs publication-title: Discrete Math. doi: 10.1016/S0012-365X(03)00203-6 – volume: 111 year: 2021 ident: 10.1016/j.matcom.2024.09.010_b31 article-title: Solving the regenerator location problem with an iterated greedy approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107659 – volume: 207 start-page: 41 year: 2023 ident: 10.1016/j.matcom.2024.09.010_b22 article-title: An iterated greedy algorithm for finding the minimum dominating set in graphs publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2022.12.018 – volume: 24 start-page: 996 issue: 6 year: 2011 ident: 10.1016/j.matcom.2024.09.010_b25 article-title: Bounds on the k -domination number of a graph publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2011.01.013 – year: 2021 ident: 10.1016/j.matcom.2024.09.010_b8 – year: 2013 ident: 10.1016/j.matcom.2024.09.010_b9 – volume: 157 start-page: 1634 issue: 7 year: 2009 ident: 10.1016/j.matcom.2024.09.010_b14 article-title: Upper bounds on the k -domination number and the k -Roman domination number publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2008.10.011 – volume: 35 start-page: 21 issue: 1 year: 2000 ident: 10.1016/j.matcom.2024.09.010_b11 article-title: Total domination in graphs publication-title: J. Graph Theory doi: 10.1002/1097-0118(200009)35:1<21::AID-JGT3>3.0.CO;2-F – volume: 7 start-page: 4 year: 2020 ident: 10.1016/j.matcom.2024.09.010_b27 article-title: Solving the k-dominating set problem on very large-scale networks publication-title: Comput. Soc. Netw. doi: 10.1186/s40649-020-00078-5 – start-page: 97 year: 2011 ident: 10.1016/j.matcom.2024.09.010_b19 – volume: 60 start-page: 77 issue: 1 year: 2010 ident: 10.1016/j.matcom.2024.09.010_b24 article-title: A bound on the k -domination number of a graph publication-title: Czechoslovak Math. J. doi: 10.1007/s10587-010-0019-1 – volume: 263 start-page: 42 year: 2019 ident: 10.1016/j.matcom.2024.09.010_b16 article-title: On the global total k-domination number of graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2018.05.025 – year: 1998 ident: 10.1016/j.matcom.2024.09.010_b6 – volume: vol. 3841 start-page: 13 year: 2016 ident: 10.1016/j.matcom.2024.09.010_b2 article-title: Strongly connected dominating sets in wireless sensor networks with unidirectional links – volume: 39 start-page: 100 year: 1991 ident: 10.1016/j.matcom.2024.09.010_b4 article-title: Finite dominating sets for network location problems publication-title: Oper. Res. doi: 10.1287/opre.39.1.100 – year: 1998 ident: 10.1016/j.matcom.2024.09.010_b7 – volume: 10 start-page: 211 issue: 3 year: 1980 ident: 10.1016/j.matcom.2024.09.010_b10 article-title: Total domination in graphs publication-title: Networks doi: 10.1002/net.3230100304 – volume: 9 start-page: 533 issue: 4 year: 1985 ident: 10.1016/j.matcom.2024.09.010_b23 article-title: An upper bound for the k -domination number of a graph publication-title: J. Graph Theory doi: 10.1002/jgt.3190090414 – volume: 5 start-page: 277 issue: 3 year: 1996 ident: 10.1016/j.matcom.2024.09.010_b18 article-title: Paths, stars, and the number three publication-title: Combin. Probab. Comput. doi: 10.1017/S0963548300002042 – volume: 177 start-page: 2033 issue: 3 year: 2007 ident: 10.1016/j.matcom.2024.09.010_b28 article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2005.12.009 |
| SSID | ssj0007545 |
| Score | 2.3949285 |
| Snippet | In this work, we propose, analyze, and solve a generalization of the k-dominating set problem in a graph, when we consider a weighted graph. Given a graph with... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 485 |
| SubjectTerms | Dominating set Edge-weight Iterated greedy algorithm Metaheuristic algorithm |
| Title | Finding the minimum k-weighted dominating sets using heuristic algorithms |
| URI | https://dx.doi.org/10.1016/j.matcom.2024.09.010 |
| Volume | 228 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect issn: 0378-4754 databaseCode: AIEXJ dateStart: 19950501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007545 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF6l0EMvFPoQtKXaQ2_RRuvnro-hCQWEUKVQKTfLa69LIDhRbFP-R_9wZ18OKFVVKvViWeux15r5tDsefzOD0Kcko6UQIgfwloKEHi0JmJmShEtGmV-C01zqZhPs4oJPp8nXXu-ny4W5m7Oq4vf3yfK_mhrGwNgqdfYJ5u4eCgNwDkaHI5gdjn9l-OOZSVRRHqUqHHLb3vZvyA8dAgXvslgo8osmO9eyqfutDhZcydaUbO5n8--L1ay5slXMXbOnrrpr7TLhdDMIzaatYY75oz_6R4oAbLLNxoNuEDaBttCh2Uk3eCJXlf5Z76lgNhnp81Gmw9rDwZdO7lxdOAqWIDOx8gA3KzYaPAxe-JHjO7uI2kZWjcnkYiriZ4pLu1XatznkZp0NTZ8fu2WHhuK7sRuYwMT1ANSjqEHwAqaorSXSPq6zPVHTqlkVqzaIo-AZ2vZZlMBSuT08HU_Pug0eZDQz1r2my8jUtMHNuX7v8TzwYi530Y79_MBDA5s91JPVK_TStfbAdqV_jU4tijCYHVsU4TWK8BpFWKEIaxThDkV4jaI36Nvx-PLzCbFdN0juMdoQ-D4uMilyJjMRhDRjPi84zTMmqOS5LGUUFD4VlBVl5sVJJLngkgdFKOOyyMF7fIu2qkUl9xGWeZyE3BdBLGGj8D2h8piFKskXC_CC-AEiTjPp0hRXSR3r8Do1mkyVJlOapKDJA8Sc-lLrIBrHLwWL__HOd_9853v0Yg3cD2irWbXyED3P75pZvfpoofELVxSLFQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+the+minimum+k-weighted+dominating+sets+using+heuristic+algorithms&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Barrena%2C+E.&rft.au=Bermudo%2C+S.&rft.au=Hern%C3%A1ndez-D%C3%ADaz%2C+A.G.&rft.au=L%C3%B3pez-S%C3%A1nchez%2C+A.D.&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=0378-4754&rft.volume=228&rft.spage=485&rft.epage=497&rft_id=info:doi/10.1016%2Fj.matcom.2024.09.010&rft.externalDocID=S0378475424003653 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |