Finding the minimum k-weighted dominating sets using heuristic algorithms

In this work, we propose, analyze, and solve a generalization of the k-dominating set problem in a graph, when we consider a weighted graph. Given a graph with weights in its edges, a set of vertices is a k-weighted dominating set if for every vertex outside the set, the sum of the weights from it t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and computers in simulation Jg. 228; S. 485 - 497
Hauptverfasser: Barrena, E., Bermudo, S., Hernández-Díaz, A.G., López-Sánchez, A.D., Zamudio, J.A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.02.2025
Schlagworte:
ISSN:0378-4754
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this work, we propose, analyze, and solve a generalization of the k-dominating set problem in a graph, when we consider a weighted graph. Given a graph with weights in its edges, a set of vertices is a k-weighted dominating set if for every vertex outside the set, the sum of the weights from it to its adjacent vertices in the set is bigger than or equal to k. The k-weighted domination number is the minimum cardinality among all k-weighted dominating sets. Since the problem of finding the k-weighted domination number is NP-hard, we have proposed several problem-adapted construction and reconstruction techniques and embedded them in an Iterated Greedy algorithm. The resulting sixteen variants of the Iterated Greedy algorithm have been compared with an exact algorithm. Computational results show that the proposal is able to find optimal or near-optimal solutions within a short computational time. To the best of our knowledge, the k-weighted dominating set problem has never been studied before in the literature and, therefore, there is no other state-of-the-art algorithm to solve it. We have also included a comparison with a particular case of our problem, the minimum dominating set problem and, on average, we achieve same quality results within around 50% of computation time. •We generalize the k-dominating set problem considering weighted graphs (k-WDSP).•We solve the problem using several variants of an Iterated Greedy (IG) algorithm.•Different problem-based destruction and reconstruction procedures have been proposed.•We compare the resulting 16 variants of an Iterated Greedy algorithm.•We compare the best variant of the IG algorithm with an exact procedure.
AbstractList In this work, we propose, analyze, and solve a generalization of the k-dominating set problem in a graph, when we consider a weighted graph. Given a graph with weights in its edges, a set of vertices is a k-weighted dominating set if for every vertex outside the set, the sum of the weights from it to its adjacent vertices in the set is bigger than or equal to k. The k-weighted domination number is the minimum cardinality among all k-weighted dominating sets. Since the problem of finding the k-weighted domination number is NP-hard, we have proposed several problem-adapted construction and reconstruction techniques and embedded them in an Iterated Greedy algorithm. The resulting sixteen variants of the Iterated Greedy algorithm have been compared with an exact algorithm. Computational results show that the proposal is able to find optimal or near-optimal solutions within a short computational time. To the best of our knowledge, the k-weighted dominating set problem has never been studied before in the literature and, therefore, there is no other state-of-the-art algorithm to solve it. We have also included a comparison with a particular case of our problem, the minimum dominating set problem and, on average, we achieve same quality results within around 50% of computation time. •We generalize the k-dominating set problem considering weighted graphs (k-WDSP).•We solve the problem using several variants of an Iterated Greedy (IG) algorithm.•Different problem-based destruction and reconstruction procedures have been proposed.•We compare the resulting 16 variants of an Iterated Greedy algorithm.•We compare the best variant of the IG algorithm with an exact procedure.
Author Barrena, E.
López-Sánchez, A.D.
Zamudio, J.A.
Bermudo, S.
Hernández-Díaz, A.G.
Author_xml – sequence: 1
  givenname: E.
  orcidid: 0000-0002-8936-725X
  surname: Barrena
  fullname: Barrena, E.
  email: ebarrena@upo.es
  organization: Department of Economics, Quantitative Methods, and Economic History. Universidad Pablo de Olavide, ES-41013, Seville, Spain
– sequence: 2
  givenname: S.
  surname: Bermudo
  fullname: Bermudo, S.
  organization: Department of Economics, Quantitative Methods, and Economic History. Universidad Pablo de Olavide, ES-41013, Seville, Spain
– sequence: 3
  givenname: A.G.
  surname: Hernández-Díaz
  fullname: Hernández-Díaz, A.G.
  organization: Department of Economics, Quantitative Methods, and Economic History. Universidad Pablo de Olavide, ES-41013, Seville, Spain
– sequence: 4
  givenname: A.D.
  orcidid: 0000-0003-3022-3865
  surname: López-Sánchez
  fullname: López-Sánchez, A.D.
  organization: Department of Economics, Quantitative Methods, and Economic History. Universidad Pablo de Olavide, ES-41013, Seville, Spain
– sequence: 5
  givenname: J.A.
  orcidid: 0000-0002-5025-7424
  surname: Zamudio
  fullname: Zamudio, J.A.
  organization: CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
BookMark eNp9kMFOwzAQRH0oEm3hDzjkBxLWiRM7FyRUUahUiQucLcfeJC51gmwHxN-TqJw5zWi0M1q9DVkN44CE3FHIKNDq_pQ5FfXoshxylkGdAYUVWUPBRcp4ya7JJoQTAMy-XJPD3g7GDl0Se0ycHaybXPKRfqPt-ogmMeMcqrhcBIwhmcJie5y8DdHqRJ270dvYu3BDrlp1Dnj7p1vyvn96272kx9fnw-7xmGrKIaaUCaOw0RxVUzBQPBdGgFa8ARQaWywLk0MD3LSKVnWJohEoCsOwao3O62JL2GVX-zEEj6389NYp_yMpyAWBPMkLArkgkFDLGcFce7jUcP7ty6KXQVscNBrrUUdpRvv_wC-9lG0s
Cites_doi 10.3934/mbe.2022337
10.1016/j.ymeth.2015.12.017
10.7151/dmgt.2016
10.1016/j.ins.2017.10.033
10.1016/j.cor.2023.106224
10.1002/jgt.3190130610
10.1016/j.future.2018.06.010
10.1016/j.ins.2017.05.052
10.1016/j.asoc.2012.07.009
10.1016/j.cor.2020.105157
10.1002/net.3230070305
10.3390/electronics8121440
10.1016/S0012-365X(03)00203-6
10.1016/j.asoc.2021.107659
10.1016/j.matcom.2022.12.018
10.1016/j.aml.2011.01.013
10.1016/j.dam.2008.10.011
10.1002/1097-0118(200009)35:1<21::AID-JGT3>3.0.CO;2-F
10.1186/s40649-020-00078-5
10.1007/s10587-010-0019-1
10.1016/j.dam.2018.05.025
10.1287/opre.39.1.100
10.1002/net.3230100304
10.1002/jgt.3190090414
10.1017/S0963548300002042
10.1016/j.ejor.2005.12.009
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.matcom.2024.09.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 497
ExternalDocumentID 10_1016_j_matcom_2024_09_010
S0378475424003653
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c170t-148daebc7eab340a728d80ca7b0e8cefe53d20b07dfa1695e8b8e83d4e6fdc293
ISSN 0378-4754
IngestDate Sat Nov 29 05:44:59 EST 2025
Sat Oct 26 15:44:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Iterated greedy algorithm
Dominating set
Metaheuristic algorithm
Edge-weight
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c170t-148daebc7eab340a728d80ca7b0e8cefe53d20b07dfa1695e8b8e83d4e6fdc293
ORCID 0000-0002-5025-7424
0000-0002-8936-725X
0000-0003-3022-3865
OpenAccessLink https://dx.doi.org/10.1016/j.matcom.2024.09.010
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_matcom_2024_09_010
elsevier_sciencedirect_doi_10_1016_j_matcom_2024_09_010
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Mathematics and computers in simulation
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bermudo, Cabrera Martínez, Hernández Mira, Sigarreta (b16) 2019; 263
Sun, Ma (b1) 2017; 414
Sánchez-Oro, Duarte (b30) 2018; 88
Hansberg, Volkmann (b14) 2009; 157
Lozano, Rodriguez-Tello (b29) 2023; 155
Pérez-Peló, Sánchez-Oro, López-Sánchez, Duarte (b32) 2019; 8
Ding-Zhu Du, Thai, Zhu (b2) 2016; vol. 3841
Potluri, Singh (b20) 2013; 13
Haynes, Hedetniemi, Slater (b7) 1998
Nacher, Akutsu (b3) 2016; 102
Álvarez-Miranda, Sinnl (b33) 2021; 127
Quintana, Martin-Santamaria, Sanchez-Oro, Duarte (b31) 2021; 111
Favaron (b12) 1988; 25
Potluri, Singh (b19) 2011
Bermudo, Higuita, Rada (b26) 2022; 19
Ruiz, Stützle (b28) 2007; 177
McCuaig, Shepherd (b17) 1989; 13
Hooker, Garfinkel, Chen (b4) 1991; 39
Bermudo, Hernández-Gómez, Sigarreta (b15) 2018; 38
Chalupa (b21) 2018; 426
Volkmann (b24) 2010; 60
Cockayne, Dawes, Hedetniemi (b10) 1980; 10
Cockayne, Hedetniemi (b5) 1977; 7
Haynes, Hedetniemi, Henning (b8) 2021
Li (b13) 2004; 274
Henning (b11) 2000; 35
Casado, Bermudo, López-Sánchez, Sánchez-Oro (b22) 2023; 207
DeLaViña, Goddard, Henning, Pepper, Vaughan (b25) 2011; 24
Nguyen, Hà, Nguyen, Tran (b27) 2020; 7
Haynes, Hedetniemi, Slater (b6) 1998
Henning, Yeo (b9) 2013
Reed (b18) 1996; 5
Cockayne, Gamble, Shepherd (b23) 1985; 9
McCuaig (10.1016/j.matcom.2024.09.010_b17) 1989; 13
Cockayne (10.1016/j.matcom.2024.09.010_b23) 1985; 9
Casado (10.1016/j.matcom.2024.09.010_b22) 2023; 207
DeLaViña (10.1016/j.matcom.2024.09.010_b25) 2011; 24
Cockayne (10.1016/j.matcom.2024.09.010_b10) 1980; 10
Quintana (10.1016/j.matcom.2024.09.010_b31) 2021; 111
Bermudo (10.1016/j.matcom.2024.09.010_b16) 2019; 263
Haynes (10.1016/j.matcom.2024.09.010_b6) 1998
Favaron (10.1016/j.matcom.2024.09.010_b12) 1988; 25
Sun (10.1016/j.matcom.2024.09.010_b1) 2017; 414
Chalupa (10.1016/j.matcom.2024.09.010_b21) 2018; 426
Bermudo (10.1016/j.matcom.2024.09.010_b15) 2018; 38
Henning (10.1016/j.matcom.2024.09.010_b11) 2000; 35
Ding-Zhu Du (10.1016/j.matcom.2024.09.010_b2) 2016; vol. 3841
Reed (10.1016/j.matcom.2024.09.010_b18) 1996; 5
Haynes (10.1016/j.matcom.2024.09.010_b8) 2021
Volkmann (10.1016/j.matcom.2024.09.010_b24) 2010; 60
Hooker (10.1016/j.matcom.2024.09.010_b4) 1991; 39
Pérez-Peló (10.1016/j.matcom.2024.09.010_b32) 2019; 8
Bermudo (10.1016/j.matcom.2024.09.010_b26) 2022; 19
Lozano (10.1016/j.matcom.2024.09.010_b29) 2023; 155
Potluri (10.1016/j.matcom.2024.09.010_b19) 2011
Cockayne (10.1016/j.matcom.2024.09.010_b5) 1977; 7
Ruiz (10.1016/j.matcom.2024.09.010_b28) 2007; 177
Nacher (10.1016/j.matcom.2024.09.010_b3) 2016; 102
Sánchez-Oro (10.1016/j.matcom.2024.09.010_b30) 2018; 88
Álvarez-Miranda (10.1016/j.matcom.2024.09.010_b33) 2021; 127
Henning (10.1016/j.matcom.2024.09.010_b9) 2013
Haynes (10.1016/j.matcom.2024.09.010_b7) 1998
Potluri (10.1016/j.matcom.2024.09.010_b20) 2013; 13
Li (10.1016/j.matcom.2024.09.010_b13) 2004; 274
Hansberg (10.1016/j.matcom.2024.09.010_b14) 2009; 157
Nguyen (10.1016/j.matcom.2024.09.010_b27) 2020; 7
References_xml – volume: 7
  start-page: 247
  year: 1977
  end-page: 261
  ident: b5
  article-title: Towards a theory of domination in graphs
  publication-title: Networks
– start-page: 97
  year: 2011
  end-page: 104
  ident: b19
  article-title: Two hybrid meta-heuristic approaches for minimum dominating set problem
– year: 1998
  ident: b7
  article-title: Fundamentals of Domination in Graphs
– volume: 10
  start-page: 211
  year: 1980
  end-page: 219
  ident: b10
  article-title: Total domination in graphs
  publication-title: Networks
– volume: 111
  year: 2021
  ident: b31
  article-title: Solving the regenerator location problem with an iterated greedy approach
  publication-title: Appl. Soft Comput.
– volume: 426
  start-page: 101
  year: 2018
  end-page: 116
  ident: b21
  article-title: An order-based algorithm for minimum dominating set with application in graph mining
  publication-title: Inform. Sci.
– volume: 155
  year: 2023
  ident: b29
  article-title: Population-based iterated greedy algorithm for the S-labeling problem
  publication-title: Comput. Oper. Res.
– volume: 35
  start-page: 21
  year: 2000
  end-page: 45
  ident: b11
  article-title: Total domination in graphs
  publication-title: J. Graph Theory
– volume: 7
  start-page: 4
  year: 2020
  ident: b27
  article-title: Solving the k-dominating set problem on very large-scale networks
  publication-title: Comput. Soc. Netw.
– volume: 38
  start-page: 301
  year: 2018
  end-page: 317
  ident: b15
  article-title: On the total
  publication-title: Discuss. Math. Graph Theory
– volume: 13
  start-page: 76
  year: 2013
  end-page: 88
  ident: b20
  article-title: Hybrid metaheuristic algorithms for minimum weight dominating set
  publication-title: Appl. Soft Comput.
– year: 2021
  ident: b8
  article-title: Structures of Domination in Graphs
– volume: 157
  start-page: 1634
  year: 2009
  end-page: 1639
  ident: b14
  article-title: Upper bounds on the k -domination number and the k -Roman domination number
  publication-title: Discrete Appl. Math.
– volume: 263
  start-page: 42
  year: 2019
  end-page: 50
  ident: b16
  article-title: On the global total
  publication-title: Discrete Appl. Math.
– volume: 177
  start-page: 2033
  year: 2007
  end-page: 2049
  ident: b28
  article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: European J. Oper. Res.
– volume: 414
  start-page: 247
  year: 2017
  end-page: 259
  ident: b1
  article-title: Dominating communities for hierarchical control of complex networks
  publication-title: Inform. Sci.
– year: 2013
  ident: b9
  article-title: Total Domination in Graphs
– volume: 5
  start-page: 277
  year: 1996
  end-page: 295
  ident: b18
  article-title: Paths, stars, and the number three
  publication-title: Combin. Probab. Comput.
– volume: 13
  start-page: 749
  year: 1989
  end-page: 762
  ident: b17
  article-title: Domination in graphs of minimum degree two
  publication-title: J. Graph Theory
– volume: 39
  start-page: 100
  year: 1991
  end-page: 118
  ident: b4
  article-title: Finite dominating sets for network location problems
  publication-title: Oper. Res.
– volume: vol. 3841
  start-page: 13
  year: 2016
  end-page: 24
  ident: b2
  article-title: Strongly connected dominating sets in wireless sensor networks with unidirectional links
  publication-title: Proceedings of AP-Web
– volume: 127
  year: 2021
  ident: b33
  article-title: Exact and heuristic algorithms for the weighted total domination problem
  publication-title: Comput. Oper. Res.
– year: 1998
  ident: b6
  article-title: Domination in Graphs: Advanced Topics
– volume: 19
  start-page: 7138
  year: 2022
  end-page: 7155
  ident: b26
  article-title: -Domination and total
  publication-title: Math. Biosci. Eng.
– volume: 102
  start-page: 57
  year: 2016
  end-page: 63
  ident: b3
  article-title: Minimum dominating set-based methods for analyzing biological networks
  publication-title: Methods
– volume: 25
  start-page: 159
  year: 1988
  end-page: 167
  ident: b12
  article-title: K -domination and k -independence in graphs
  publication-title: Ars Combin.
– volume: 207
  start-page: 41
  year: 2023
  end-page: 58
  ident: b22
  article-title: An iterated greedy algorithm for finding the minimum dominating set in graphs
  publication-title: Math. Comput. Simulation
– volume: 8
  year: 2019
  ident: b32
  article-title: A multi-objective parallel iterated greedy for solving the p-center and p-dispersion problem
  publication-title: Electronics
– volume: 274
  start-page: 303
  year: 2004
  end-page: 310
  ident: b13
  article-title: On connected k -domination numbers of graphs
  publication-title: Discrete Math.
– volume: 24
  start-page: 996
  year: 2011
  end-page: 998
  ident: b25
  article-title: Bounds on the k -domination number of a graph
  publication-title: Appl. Math. Lett.
– volume: 9
  start-page: 533
  year: 1985
  end-page: 534
  ident: b23
  article-title: An upper bound for the k -domination number of a graph
  publication-title: J. Graph Theory
– volume: 88
  start-page: 785
  year: 2018
  end-page: 791
  ident: b30
  article-title: Iterated Greedy algorithm for performing community detection in social networks
  publication-title: Future Gener. Comput. Syst.
– volume: 60
  start-page: 77
  year: 2010
  end-page: 83
  ident: b24
  article-title: A bound on the k -domination number of a graph
  publication-title: Czechoslovak Math. J.
– volume: 19
  start-page: 7138
  issue: 7
  year: 2022
  ident: 10.1016/j.matcom.2024.09.010_b26
  article-title: k-Domination and total k-domination numbers in catacondensed hexagonal systems
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2022337
– volume: 102
  start-page: 57
  year: 2016
  ident: 10.1016/j.matcom.2024.09.010_b3
  article-title: Minimum dominating set-based methods for analyzing biological networks
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.12.017
– volume: 38
  start-page: 301
  issue: 1
  year: 2018
  ident: 10.1016/j.matcom.2024.09.010_b15
  article-title: On the total k-domination in graphs
  publication-title: Discuss. Math. Graph Theory
  doi: 10.7151/dmgt.2016
– volume: 426
  start-page: 101
  year: 2018
  ident: 10.1016/j.matcom.2024.09.010_b21
  article-title: An order-based algorithm for minimum dominating set with application in graph mining
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.10.033
– volume: 155
  year: 2023
  ident: 10.1016/j.matcom.2024.09.010_b29
  article-title: Population-based iterated greedy algorithm for the S-labeling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2023.106224
– volume: 13
  start-page: 749
  year: 1989
  ident: 10.1016/j.matcom.2024.09.010_b17
  article-title: Domination in graphs of minimum degree two
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.3190130610
– volume: 25
  start-page: 159
  year: 1988
  ident: 10.1016/j.matcom.2024.09.010_b12
  article-title: K -domination and k -independence in graphs
  publication-title: Ars Combin.
– volume: 88
  start-page: 785
  year: 2018
  ident: 10.1016/j.matcom.2024.09.010_b30
  article-title: Iterated Greedy algorithm for performing community detection in social networks
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.06.010
– volume: 414
  start-page: 247
  year: 2017
  ident: 10.1016/j.matcom.2024.09.010_b1
  article-title: Dominating communities for hierarchical control of complex networks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.05.052
– volume: 13
  start-page: 76
  year: 2013
  ident: 10.1016/j.matcom.2024.09.010_b20
  article-title: Hybrid metaheuristic algorithms for minimum weight dominating set
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.07.009
– volume: 127
  year: 2021
  ident: 10.1016/j.matcom.2024.09.010_b33
  article-title: Exact and heuristic algorithms for the weighted total domination problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2020.105157
– volume: 7
  start-page: 247
  issue: 3
  year: 1977
  ident: 10.1016/j.matcom.2024.09.010_b5
  article-title: Towards a theory of domination in graphs
  publication-title: Networks
  doi: 10.1002/net.3230070305
– volume: 8
  issue: 12
  year: 2019
  ident: 10.1016/j.matcom.2024.09.010_b32
  article-title: A multi-objective parallel iterated greedy for solving the p-center and p-dispersion problem
  publication-title: Electronics
  doi: 10.3390/electronics8121440
– volume: 274
  start-page: 303
  issue: 1–3
  year: 2004
  ident: 10.1016/j.matcom.2024.09.010_b13
  article-title: On connected k -domination numbers of graphs
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(03)00203-6
– volume: 111
  year: 2021
  ident: 10.1016/j.matcom.2024.09.010_b31
  article-title: Solving the regenerator location problem with an iterated greedy approach
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107659
– volume: 207
  start-page: 41
  year: 2023
  ident: 10.1016/j.matcom.2024.09.010_b22
  article-title: An iterated greedy algorithm for finding the minimum dominating set in graphs
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2022.12.018
– volume: 24
  start-page: 996
  issue: 6
  year: 2011
  ident: 10.1016/j.matcom.2024.09.010_b25
  article-title: Bounds on the k -domination number of a graph
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2011.01.013
– year: 2021
  ident: 10.1016/j.matcom.2024.09.010_b8
– year: 2013
  ident: 10.1016/j.matcom.2024.09.010_b9
– volume: 157
  start-page: 1634
  issue: 7
  year: 2009
  ident: 10.1016/j.matcom.2024.09.010_b14
  article-title: Upper bounds on the k -domination number and the k -Roman domination number
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2008.10.011
– volume: 35
  start-page: 21
  issue: 1
  year: 2000
  ident: 10.1016/j.matcom.2024.09.010_b11
  article-title: Total domination in graphs
  publication-title: J. Graph Theory
  doi: 10.1002/1097-0118(200009)35:1<21::AID-JGT3>3.0.CO;2-F
– volume: 7
  start-page: 4
  year: 2020
  ident: 10.1016/j.matcom.2024.09.010_b27
  article-title: Solving the k-dominating set problem on very large-scale networks
  publication-title: Comput. Soc. Netw.
  doi: 10.1186/s40649-020-00078-5
– start-page: 97
  year: 2011
  ident: 10.1016/j.matcom.2024.09.010_b19
– volume: 60
  start-page: 77
  issue: 1
  year: 2010
  ident: 10.1016/j.matcom.2024.09.010_b24
  article-title: A bound on the k -domination number of a graph
  publication-title: Czechoslovak Math. J.
  doi: 10.1007/s10587-010-0019-1
– volume: 263
  start-page: 42
  year: 2019
  ident: 10.1016/j.matcom.2024.09.010_b16
  article-title: On the global total k-domination number of graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2018.05.025
– year: 1998
  ident: 10.1016/j.matcom.2024.09.010_b6
– volume: vol. 3841
  start-page: 13
  year: 2016
  ident: 10.1016/j.matcom.2024.09.010_b2
  article-title: Strongly connected dominating sets in wireless sensor networks with unidirectional links
– volume: 39
  start-page: 100
  year: 1991
  ident: 10.1016/j.matcom.2024.09.010_b4
  article-title: Finite dominating sets for network location problems
  publication-title: Oper. Res.
  doi: 10.1287/opre.39.1.100
– year: 1998
  ident: 10.1016/j.matcom.2024.09.010_b7
– volume: 10
  start-page: 211
  issue: 3
  year: 1980
  ident: 10.1016/j.matcom.2024.09.010_b10
  article-title: Total domination in graphs
  publication-title: Networks
  doi: 10.1002/net.3230100304
– volume: 9
  start-page: 533
  issue: 4
  year: 1985
  ident: 10.1016/j.matcom.2024.09.010_b23
  article-title: An upper bound for the k -domination number of a graph
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.3190090414
– volume: 5
  start-page: 277
  issue: 3
  year: 1996
  ident: 10.1016/j.matcom.2024.09.010_b18
  article-title: Paths, stars, and the number three
  publication-title: Combin. Probab. Comput.
  doi: 10.1017/S0963548300002042
– volume: 177
  start-page: 2033
  issue: 3
  year: 2007
  ident: 10.1016/j.matcom.2024.09.010_b28
  article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2005.12.009
SSID ssj0007545
Score 2.3949285
Snippet In this work, we propose, analyze, and solve a generalization of the k-dominating set problem in a graph, when we consider a weighted graph. Given a graph with...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 485
SubjectTerms Dominating set
Edge-weight
Iterated greedy algorithm
Metaheuristic algorithm
Title Finding the minimum k-weighted dominating sets using heuristic algorithms
URI https://dx.doi.org/10.1016/j.matcom.2024.09.010
Volume 228
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 0378-4754
  databaseCode: AIEXJ
  dateStart: 19950501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007545
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF6l0EMvFPoQtKXaQ2_RRuvnro-hCQWEUKVQKTfLa69LIDhRbFP-R_9wZ18OKFVVKvViWeux15r5tDsefzOD0Kcko6UQIgfwloKEHi0JmJmShEtGmV-C01zqZhPs4oJPp8nXXu-ny4W5m7Oq4vf3yfK_mhrGwNgqdfYJ5u4eCgNwDkaHI5gdjn9l-OOZSVRRHqUqHHLb3vZvyA8dAgXvslgo8osmO9eyqfutDhZcydaUbO5n8--L1ay5slXMXbOnrrpr7TLhdDMIzaatYY75oz_6R4oAbLLNxoNuEDaBttCh2Uk3eCJXlf5Z76lgNhnp81Gmw9rDwZdO7lxdOAqWIDOx8gA3KzYaPAxe-JHjO7uI2kZWjcnkYiriZ4pLu1XatznkZp0NTZ8fu2WHhuK7sRuYwMT1ANSjqEHwAqaorSXSPq6zPVHTqlkVqzaIo-AZ2vZZlMBSuT08HU_Pug0eZDQz1r2my8jUtMHNuX7v8TzwYi530Y79_MBDA5s91JPVK_TStfbAdqV_jU4tijCYHVsU4TWK8BpFWKEIaxThDkV4jaI36Nvx-PLzCbFdN0juMdoQ-D4uMilyJjMRhDRjPi84zTMmqOS5LGUUFD4VlBVl5sVJJLngkgdFKOOyyMF7fIu2qkUl9xGWeZyE3BdBLGGj8D2h8piFKskXC_CC-AEiTjPp0hRXSR3r8Do1mkyVJlOapKDJA8Sc-lLrIBrHLwWL__HOd_9853v0Yg3cD2irWbXyED3P75pZvfpoofELVxSLFQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+the+minimum+k-weighted+dominating+sets+using+heuristic+algorithms&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Barrena%2C+E.&rft.au=Bermudo%2C+S.&rft.au=Hern%C3%A1ndez-D%C3%ADaz%2C+A.G.&rft.au=L%C3%B3pez-S%C3%A1nchez%2C+A.D.&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=0378-4754&rft.volume=228&rft.spage=485&rft.epage=497&rft_id=info:doi/10.1016%2Fj.matcom.2024.09.010&rft.externalDocID=S0378475424003653
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon