Analyzing and Predicting Student Performance in Discrete Mathematics Using Supervised Learning Algorithms

Discrete Mathematics is an important and challenging course for computer science and engineering students. It includes topics, such as logic, sets, proofs, number theory, graphs, trees, computation, relations, functions, and basic algorithmic concepts. These topics require strong analytical reasonin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer applications in engineering education Ročník 33; číslo 6
Hlavní autor: Uddin, Mohammad Salah
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.11.2025
Témata:
ISSN:1061-3773, 1099-0542
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Discrete Mathematics is an important and challenging course for computer science and engineering students. It includes topics, such as logic, sets, proofs, number theory, graphs, trees, computation, relations, functions, and basic algorithmic concepts. These topics require strong analytical reasoning and consistent effort. As a result, many students find this course challenging to perform well. The aim of this study is to predict student performance in a Discrete Mathematics course at a reputed private university located in Bangladesh. Data were collected from both course instructors and students during the spring and summer semester of 2025. Instructors provided academic records, such as attendance, quizzes, assignments, and midterm scores. Students provided additional information, which included daily study time, subject interests, and use of learning platforms. The final data set included records for 240 students. K ‐means clustering with the Davies–Bouldin method was used to group similar students. Then, four machine learning (ML) models were trained and tested: Support Vector Machine (SVM), Decision Tree, K ‐Nearest Neighbors, and Naïve Bayes. The models were implemented using Python's scikit‐learn library, with stratified sampling and fivefold cross‐validation. Among the models, SVM achieved the highest accuracy of 96% after parameter tuning. Naïve Bayes had the lowest accuracy due to the assumption of feature independence. Key predictors of performance included mean score, attendance, and daily study hours. Findings show that ML can help instructors identify at‐risk students early, provide focused academic support, and improve learning outcomes. While the results are promising, the study is limited by sample size and does not include psychological or emotional factors. Future work will explore larger data sets and apply interpretable Artificial Intelligence techniques for better model transparency.
AbstractList Discrete Mathematics is an important and challenging course for computer science and engineering students. It includes topics, such as logic, sets, proofs, number theory, graphs, trees, computation, relations, functions, and basic algorithmic concepts. These topics require strong analytical reasoning and consistent effort. As a result, many students find this course challenging to perform well. The aim of this study is to predict student performance in a Discrete Mathematics course at a reputed private university located in Bangladesh. Data were collected from both course instructors and students during the spring and summer semester of 2025. Instructors provided academic records, such as attendance, quizzes, assignments, and midterm scores. Students provided additional information, which included daily study time, subject interests, and use of learning platforms. The final data set included records for 240 students. K ‐means clustering with the Davies–Bouldin method was used to group similar students. Then, four machine learning (ML) models were trained and tested: Support Vector Machine (SVM), Decision Tree, K ‐Nearest Neighbors, and Naïve Bayes. The models were implemented using Python's scikit‐learn library, with stratified sampling and fivefold cross‐validation. Among the models, SVM achieved the highest accuracy of 96% after parameter tuning. Naïve Bayes had the lowest accuracy due to the assumption of feature independence. Key predictors of performance included mean score, attendance, and daily study hours. Findings show that ML can help instructors identify at‐risk students early, provide focused academic support, and improve learning outcomes. While the results are promising, the study is limited by sample size and does not include psychological or emotional factors. Future work will explore larger data sets and apply interpretable Artificial Intelligence techniques for better model transparency.
Author Uddin, Mohammad Salah
Author_xml – sequence: 1
  givenname: Mohammad Salah
  orcidid: 0000-0002-4180-2355
  surname: Uddin
  fullname: Uddin, Mohammad Salah
  organization: Computer Science and Engineering Department East West University Dhaka Bangladesh
BookMark eNotkEtPAjEQgBuDiYAe_AdNPHlYbLfblh4JPhOMJMp50-1OoYTtYltM8Ne7C57mkW8mM98IDXzrAaFbSiaUkPzBaJhIQsn0Ag0pUSojvMgHfS5oxqRkV2gU45YQogRTQ-RmXu-Ov86vsfY1XgaonUl9-ZkONfiElxBsGxrtDWDn8aOLJkAC_K7TBhqdnIl4FU8Thz2EHxehxgvQwfe92W7dBpc2TbxGl1bvItz8xzFaPT99zV-zxcfL23y2yAztDs-o4NZYRvNKUQE8J1NSMSO5qYqCWcEY18qC4NIoAULausgrrqppzQvJKVRsjO7Oe_eh_T5ATOW2PYTuy1iyXHLWYYR01P2ZMqGNMYAt98E1OhxLSsreZNmZLE8m2R8bZ2iB
Cites_doi 10.3390/app13158933
10.20473/jisebi.7.1.1-10
10.1002/widm.1355
10.1155/2024/4067721
10.1109/InCACCT61598.2024.10551110
10.11591/edulearn.v19i1.21609
10.1016/j.iheduc.2015.11.003
10.11591/edulearn.v19i1.21549
10.31580/sps.v2i1.1205
10.1111/bmsp.12359
10.3390/educsci11090552
10.3897/jucs.73427
10.1145/1185448.1185579
10.1007/978-3-031-36336-8_57
ContentType Journal Article
Copyright 2025 Wiley Periodicals LLC.
Copyright_xml – notice: 2025 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/cae.70108
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1099-0542
ExternalDocumentID 10_1002_cae_70108
GroupedDBID .3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAHSB
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O8X
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c1701-165fcf312b916e52080b3c75cb443f6335a9fe657c96e67fd42b59b8d54751eb3
ISSN 1061-3773
IngestDate Wed Nov 26 07:59:47 EST 2025
Thu Nov 27 00:19:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1701-165fcf312b916e52080b3c75cb443f6335a9fe657c96e67fd42b59b8d54751eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4180-2355
PQID 3275347500
PQPubID 2045172
ParticipantIDs proquest_journals_3275347500
crossref_primary_10_1002_cae_70108
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer applications in engineering education
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_2_1
e_1_2_12_16_1
Islam A. (e_1_2_12_6_1) 2023
Long P. (e_1_2_12_17_1) 2014; 22
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
Nieto Juscafresa A. (e_1_2_12_18_1) 2022
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
Sclater N. (e_1_2_12_19_1) 2015
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – ident: e_1_2_12_4_1
  doi: 10.3390/app13158933
– volume: 22
  start-page: 132
  issue: 3
  year: 2014
  ident: e_1_2_12_17_1
  article-title: Penetrating the Fog: Analytics in Learning and Education
  publication-title: Italian Journal of Educational Technology
– ident: e_1_2_12_9_1
  doi: 10.20473/jisebi.7.1.1-10
– volume-title: Code of Practice for Learning Analytics
  year: 2015
  ident: e_1_2_12_19_1
– ident: e_1_2_12_2_1
  doi: 10.1002/widm.1355
– ident: e_1_2_12_10_1
  doi: 10.1155/2024/4067721
– ident: e_1_2_12_8_1
  doi: 10.1109/InCACCT61598.2024.10551110
– ident: e_1_2_12_7_1
  doi: 10.11591/edulearn.v19i1.21609
– ident: e_1_2_12_12_1
  doi: 10.1016/j.iheduc.2015.11.003
– ident: e_1_2_12_13_1
  doi: 10.11591/edulearn.v19i1.21549
– start-page: 24
  volume-title: International Conference on Computing & Emerging Technologies
  year: 2023
  ident: e_1_2_12_6_1
– ident: e_1_2_12_15_1
  doi: 10.31580/sps.v2i1.1205
– ident: e_1_2_12_16_1
  doi: 10.1111/bmsp.12359
– ident: e_1_2_12_3_1
  doi: 10.3390/educsci11090552
– ident: e_1_2_12_14_1
  doi: 10.3897/jucs.73427
– volume-title: An Introduction to Explainable Artificial Intelligence With LIME and SHAP
  year: 2022
  ident: e_1_2_12_18_1
– ident: e_1_2_12_11_1
  doi: 10.1145/1185448.1185579
– ident: e_1_2_12_5_1
  doi: 10.1007/978-3-031-36336-8_57
SSID ssj0009639
Score 2.3519068
Snippet Discrete Mathematics is an important and challenging course for computer science and engineering students. It includes topics, such as logic, sets, proofs,...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Accuracy
Artificial intelligence
Clustering
Colleges & universities
Combinatorics
Datasets
Decision trees
Learning
Machine learning
Mathematics
Number theory
Students
Supervised learning
Support vector machines
Teachers
Title Analyzing and Predicting Student Performance in Discrete Mathematics Using Supervised Learning Algorithms
URI https://www.proquest.com/docview/3275347500
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-0542
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009639
  issn: 1061-3773
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEOEz_FfoAshLhMGakdx_ERwSYOpUzQSr1FiWNvkbq0a7Np2v55nmM7SSWExoFL1LhREvn78vKeX973EPogNHgBAGdAmFZBlAkW5AU4ciwH75lxLRJlm03wySSZz8XZYHDva2FuFryqkttbsfqvUMMYgG1KZ_8B7vakMAC_AXTYAuywfRDwjczIna89PFubTExtdbcbGUvz0XtbK1BWRn8TPMfa9CDyCq6bI_slwa_rlTElG3BKx-0SyuJ8uS7rC6dy7kUOXHOIo35CvJEj6fQOnUpsL_E_KworYfB9eZFdXmbg-2YLt0DtViIIcyV5D7d3PTsbmmUvbruYHCs3ZgQRWLRlnK1KhiNh_EebbzVkZaaOOQSXSfdi88n8yY_0dDYep9OT-fTj6iowLcdMat71X3mEdghnIhmina8_4cBOszluGtG19-qFqULyqb3atjuz_TZvXJTpM7TrYgv82XLiORqo6gV62lOchL0eyC9R2XIFA1dwxxXsuIJ7XMFlhT1XcO80uOEK7riCPVdwx5VXaHZ6Mv3yLXC9NwJpFPqDUcy01HREcogfFCMQWORUcibzKKI6ppRlQit4mqWIVcx1EZGciTwpWMTZSOX0NRpWy0q9QVjxAmIGQiVEG5FSEmK6kEgV0YJwNdLZHnrvpzBdWYmV1IppkxTmOW3meQ8d-slN3cO2SSngRuF6Ybj_978P0JOOsIdoWK-v1Vv0WN7U5Wb9zuH-G5rCgRs
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+and+Predicting+Student+Performance+in+Discrete+Mathematics+Using+Supervised+Learning+Algorithms&rft.jtitle=Computer+applications+in+engineering+education&rft.au=Uddin%2C+Mohammad+Salah&rft.date=2025-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1061-3773&rft.eissn=1099-0542&rft.volume=33&rft.issue=6&rft_id=info:doi/10.1002%2Fcae.70108&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-3773&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-3773&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-3773&client=summon