Hybrid machine learning for stock price prediction in the Moroccan banking sector
Analyzing historical stock market data using machine-learning techniques is crucial for data scientists and researchers to optimize stock price prediction models. This study uses machine learning regression algorithms and feature selection methods to optimize a simulated stock price prediction model...
Saved in:
| Published in: | International journal of electrical and computer engineering (Malacca, Malacca) Vol. 14; no. 3; p. 3197 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.06.2024
|
| ISSN: | 2088-8708, 2722-2578 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Analyzing historical stock market data using machine-learning techniques is crucial for data scientists and researchers to optimize stock price prediction models. This study uses machine learning regression algorithms and feature selection methods to optimize a simulated stock price prediction model using real historical data from Bank of Africa, a Moroccan bank. The approach compares multiple supervised regression algorithms, such as linear regression, extreme gradient boosting, ordinary least squared, random forest regressor, a linear least-squares L2-regularized, epsilon-support vector regression, and linear support vector regression. Each of these algorithms is associated with different feature selection algorithms to improve the performance of the prediction model. The analysis results revealed that hybridizing algorithms between the highest score percentiles, univariate linear regression, and linear support vector regression perform better according to the root mean squared error and R2-Score measures. This approach overcomes the problems associated with high-dimensional data by reducing the number of features and improving prediction accuracy. |
|---|---|
| AbstractList | Analyzing historical stock market data using machine-learning techniques is crucial for data scientists and researchers to optimize stock price prediction models. This study uses machine learning regression algorithms and feature selection methods to optimize a simulated stock price prediction model using real historical data from Bank of Africa, a Moroccan bank. The approach compares multiple supervised regression algorithms, such as linear regression, extreme gradient boosting, ordinary least squared, random forest regressor, a linear least-squares L2-regularized, epsilon-support vector regression, and linear support vector regression. Each of these algorithms is associated with different feature selection algorithms to improve the performance of the prediction model. The analysis results revealed that hybridizing algorithms between the highest score percentiles, univariate linear regression, and linear support vector regression perform better according to the root mean squared error and R2-Score measures. This approach overcomes the problems associated with high-dimensional data by reducing the number of features and improving prediction accuracy. |
| Author | Adil, Oualid Mohamed, Youssfi Lahcen, Moumoun Itri, Bouzgarne Omar, Bouattane Latifa, El Madani |
| Author_xml | – sequence: 1 givenname: Bouzgarne orcidid: 0000-0002-9342-9038 surname: Itri fullname: Itri, Bouzgarne – sequence: 2 givenname: Youssfi orcidid: 0000-0003-2842-9880 surname: Mohamed fullname: Mohamed, Youssfi – sequence: 3 givenname: Bouattane orcidid: 0000-0002-1207-2779 surname: Omar fullname: Omar, Bouattane – sequence: 4 givenname: El Madani surname: Latifa fullname: Latifa, El Madani – sequence: 5 givenname: Moumoun orcidid: 0000-0003-3651-8699 surname: Lahcen fullname: Lahcen, Moumoun – sequence: 6 givenname: Oualid orcidid: 0009-0004-6973-3840 surname: Adil fullname: Adil, Oualid |
| BookMark | eNotkNtKAzEURYNUsNb-Q35gxtwmyTxKUStURNDnkMmc2Ng2GZJB6N87vbycfV72ZrHu0SymCAhhSmpKm5Y-hl9wUP9REXg9DJy2quKMqBs0Z4qxijVKz6afaF1pRfQdWpYSOiKEEkTJZo4-18cuhx4frNuGCHgPNscQf7BPGZcxuR0ecnAwXeiDG0OKOEQ8bgG_p5ycsxF3Nu5OlQJuTPkB3Xq7L7C85gJ9vzx_rdbV5uP1bfW0qRyVE6YVjXdSSNtbab2HXmtPWzZBgWotFdZLLjjroCHAKNeCQetdqxrbSa845QukL7sup1IyeDOBHmw-GkrM2Y452zFnO-Zix5zs8H9vgF4_ |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.11591/ijece.v14i3.pp3197-3207 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2722-2578 |
| ExternalDocumentID | 10_11591_ijece_v14i3_pp3197_3207 |
| GroupedDBID | .4S .DC 8FE 8FG AAKDD AAYXX ABJCF ABUWG AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION EOJEC HCIFZ I-F K6V K7- KWQ L6V M7S OBODZ OK1 P62 PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS TUS |
| ID | FETCH-LOGICAL-c1697-a45fc646ada6affed88f192765e79a14af63432be50e213842e9fc975ab6f7313 |
| ISSN | 2088-8708 |
| IngestDate | Sat Nov 29 02:39:46 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1697-a45fc646ada6affed88f192765e79a14af63432be50e213842e9fc975ab6f7313 |
| ORCID | 0000-0002-1207-2779 0000-0003-2842-9880 0009-0004-6973-3840 0000-0002-9342-9038 0000-0003-3651-8699 |
| OpenAccessLink | https://ijece.iaescore.com/index.php/IJECE/article/download/33458/17417 |
| ParticipantIDs | crossref_primary_10_11591_ijece_v14i3_pp3197_3207 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of electrical and computer engineering (Malacca, Malacca) |
| PublicationYear | 2024 |
| SSID | ssib044740765 ssj0000866295 |
| Score | 2.2837749 |
| Snippet | Analyzing historical stock market data using machine-learning techniques is crucial for data scientists and researchers to optimize stock price prediction... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 3197 |
| Title | Hybrid machine learning for stock price prediction in the Moroccan banking sector |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044740765 issn: 2088-8708 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: P5Z dateStart: 20110901 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: K7- dateStart: 20110901 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: East & South Asia Database (ProQuest) customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: BVBZV dateStart: 20110901 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: M7S dateStart: 20110901 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: BENPR dateStart: 20110901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwgEOqLwE5SEfuK1Sasex4yNFRa3EViAVqbfIcWxIabNRd7tqOfBT-S0d23l4EYiHxCWKrPXE8Xw7M57MA6GXqTAG1EiZpLnOEqbhuKO44onUFjR6aQnLrG82IQ4P8-Nj-X4y-d7nwqxORdPkl5ey_a-shjFgtkud_Qt2D0RhAO6B6XAFtsP1jxi_f-WSsKZnPkrS9G0hQrgkWHr6y7R1hYRcdYCq1nGs42wO2sxJxVL5hgrThXfpx_brugMxKjsR2ukMpQd01yxiasZ6h86YnalTBY8IWULd7eCKOFiGtPfd-cXXT7DqMSx3_lmdBa8sSKfFIuQae99wFyAOU9QS7NxhyjtYo1UhcA0eVammjh0clI2BWEEOUhCEILR3gpg2YUwAqJy0WRPkLAJsGkllEDPi5-oik05f1CdGm-0VYXW63bbu10lKQzPe9QrdP2jOIZ7Rn6SAVuEpFZ5SESgVjtINdJOKTLqQw9m3vV7eMSbgON19ZfaWQ8459Y2Chnfug8-A-KtfLDOyqCLT6GgT3e3ONPh1wOI9NDHNfXQnqnT5AH0IqMQdKnGPSgyoxB6V2KMSj6jEdYMBlbhHJe5QiQMqH6KPb_eO3uwnXTePRBMOS1Xwr9ecceA4V9aaKs8tHC_g_Y2QijBluUtyLk22YyhJc0aNtFqKTJXcipSkj9BGM2_MY9gRm-WUKUlLkruCgSqriCs1oISC_TPVE0T6HSnaULSl-B2Ltv5hzlN0ewTsM7SxPL8wz9EtvVrWi_MXntfXh76V5Q |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+machine+learning+for+stock+price+prediction+in+the+Moroccan+banking+sector&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Itri%2C+Bouzgarne&rft.au=Mohamed%2C+Youssfi&rft.au=Omar%2C+Bouattane&rft.au=Latifa%2C+El+Madani&rft.date=2024-06-01&rft.issn=2088-8708&rft.eissn=2722-2578&rft.volume=14&rft.issue=3&rft.spage=3197&rft_id=info:doi/10.11591%2Fijece.v14i3.pp3197-3207&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijece_v14i3_pp3197_3207 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon |