Hybrid machine learning for stock price prediction in the Moroccan banking sector

Analyzing historical stock market data using machine-learning techniques is crucial for data scientists and researchers to optimize stock price prediction models. This study uses machine learning regression algorithms and feature selection methods to optimize a simulated stock price prediction model...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of electrical and computer engineering (Malacca, Malacca) Ročník 14; číslo 3; s. 3197
Hlavní autori: Itri, Bouzgarne, Mohamed, Youssfi, Omar, Bouattane, Latifa, El Madani, Lahcen, Moumoun, Adil, Oualid
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.06.2024
ISSN:2088-8708, 2722-2578
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Analyzing historical stock market data using machine-learning techniques is crucial for data scientists and researchers to optimize stock price prediction models. This study uses machine learning regression algorithms and feature selection methods to optimize a simulated stock price prediction model using real historical data from Bank of Africa, a Moroccan bank. The approach compares multiple supervised regression algorithms, such as linear regression, extreme gradient boosting, ordinary least squared, random forest regressor, a linear least-squares L2-regularized, epsilon-support vector regression, and linear support vector regression. Each of these algorithms is associated with different feature selection algorithms to improve the performance of the prediction model. The analysis results revealed that hybridizing algorithms between the highest score percentiles, univariate linear regression, and linear support vector regression perform better according to the root mean squared error and R2-Score measures. This approach overcomes the problems associated with high-dimensional data by reducing the number of features and improving prediction accuracy.
AbstractList Analyzing historical stock market data using machine-learning techniques is crucial for data scientists and researchers to optimize stock price prediction models. This study uses machine learning regression algorithms and feature selection methods to optimize a simulated stock price prediction model using real historical data from Bank of Africa, a Moroccan bank. The approach compares multiple supervised regression algorithms, such as linear regression, extreme gradient boosting, ordinary least squared, random forest regressor, a linear least-squares L2-regularized, epsilon-support vector regression, and linear support vector regression. Each of these algorithms is associated with different feature selection algorithms to improve the performance of the prediction model. The analysis results revealed that hybridizing algorithms between the highest score percentiles, univariate linear regression, and linear support vector regression perform better according to the root mean squared error and R2-Score measures. This approach overcomes the problems associated with high-dimensional data by reducing the number of features and improving prediction accuracy.
Author Adil, Oualid
Mohamed, Youssfi
Lahcen, Moumoun
Itri, Bouzgarne
Omar, Bouattane
Latifa, El Madani
Author_xml – sequence: 1
  givenname: Bouzgarne
  orcidid: 0000-0002-9342-9038
  surname: Itri
  fullname: Itri, Bouzgarne
– sequence: 2
  givenname: Youssfi
  orcidid: 0000-0003-2842-9880
  surname: Mohamed
  fullname: Mohamed, Youssfi
– sequence: 3
  givenname: Bouattane
  orcidid: 0000-0002-1207-2779
  surname: Omar
  fullname: Omar, Bouattane
– sequence: 4
  givenname: El Madani
  surname: Latifa
  fullname: Latifa, El Madani
– sequence: 5
  givenname: Moumoun
  orcidid: 0000-0003-3651-8699
  surname: Lahcen
  fullname: Lahcen, Moumoun
– sequence: 6
  givenname: Oualid
  orcidid: 0009-0004-6973-3840
  surname: Adil
  fullname: Adil, Oualid
BookMark eNotkNtKAzEURYNUsNb-Q35gxtwmyTxKUStURNDnkMmc2Ng2GZJB6N87vbycfV72ZrHu0SymCAhhSmpKm5Y-hl9wUP9REXg9DJy2quKMqBs0Z4qxijVKz6afaF1pRfQdWpYSOiKEEkTJZo4-18cuhx4frNuGCHgPNscQf7BPGZcxuR0ecnAwXeiDG0OKOEQ8bgG_p5ycsxF3Nu5OlQJuTPkB3Xq7L7C85gJ9vzx_rdbV5uP1bfW0qRyVE6YVjXdSSNtbab2HXmtPWzZBgWotFdZLLjjroCHAKNeCQetdqxrbSa845QukL7sup1IyeDOBHmw-GkrM2Y452zFnO-Zix5zs8H9vgF4_
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.11591/ijece.v14i3.pp3197-3207
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2722-2578
ExternalDocumentID 10_11591_ijece_v14i3_pp3197_3207
GroupedDBID .4S
.DC
8FE
8FG
AAKDD
AAYXX
ABJCF
ABUWG
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
EOJEC
HCIFZ
I-F
K6V
K7-
KWQ
L6V
M7S
OBODZ
OK1
P62
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
TUS
ID FETCH-LOGICAL-c1697-a45fc646ada6affed88f192765e79a14af63432be50e213842e9fc975ab6f7313
ISSN 2088-8708
IngestDate Sat Nov 29 02:39:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1697-a45fc646ada6affed88f192765e79a14af63432be50e213842e9fc975ab6f7313
ORCID 0000-0002-1207-2779
0000-0003-2842-9880
0009-0004-6973-3840
0000-0002-9342-9038
0000-0003-3651-8699
OpenAccessLink https://ijece.iaescore.com/index.php/IJECE/article/download/33458/17417
ParticipantIDs crossref_primary_10_11591_ijece_v14i3_pp3197_3207
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of electrical and computer engineering (Malacca, Malacca)
PublicationYear 2024
SSID ssib044740765
ssj0000866295
Score 2.2837749
Snippet Analyzing historical stock market data using machine-learning techniques is crucial for data scientists and researchers to optimize stock price prediction...
SourceID crossref
SourceType Index Database
StartPage 3197
Title Hybrid machine learning for stock price prediction in the Moroccan banking sector
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044740765
  issn: 2088-8708
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: P5Z
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: K7-
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: East & South Asia Database
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: BVBZV
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastsouthasia
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: M7S
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: BENPR
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwgEOiKd4ywduq5RN7PhxBFRUpG4FUpF6ixzvGAJtNupuV4UDP5XfwtjOaxGIh8Qliqz1xNn59Hk8mQchT7W2uc6NTQCAJRy0SoyVIhFsUXJV8lxDSBQ-kIeH6vhYv5lMvnW5MJsTWdfq4kI3_1XVOIbK9qmzf6HuXigO4D0qHa-odrz-keL3P_skrOlpiJKEri1EDJdES89-mja-kJCvDrCo7DjWcb7E3cyzYmlCQ4XpKrj0x_brtgNxVHYittPpSw_YtlnEFIZ6h96YnZsTg4-IWULtbe-KeL2Oae8vludf3uOqh7Dc5QdzGr2yyE6rVcw1Dr7hNkAcp5g12rn9lANcozMxcA0ftTB1NXZwZHwIxIo8mCERImnPIk1DHJN4hvZss0XkfARYNmJlpBn58-0i136_qD6Chd1Nyiu22zT-1wnLYjPe7QrdP-ycfTxjOEmhrCJIKoKkIkoqvKRL5HImc-1DDudf9zq-41zicbr9yhwsByVEFhoF9e_cBZ-h8Ge_WObIohqZRkc3yPX2TEOfRyzeJBOob5Fro0qXt8nbiEraopJ2qKSIShpQSQMq6YBKWtUUUUk7VNIWlTSi8g5592rv6OV-0nbzSGwqcKmG584KLlDjwjgHC6UcHi_w_UFqk3LjhE9yLiGfQZYyxTPQzmqZm1I4yVJ2l-zUyxruETrTlmU25ykaeJyVVjlpXOkWxqpSC1D3Sdr9I0UTi7YUv1PRg3-Y85BcHQD7iOysz87hMbliN-tqdfYk6Po79FqX6A
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+machine+learning+for+stock+price+prediction+in+the+Moroccan+banking+sector&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Itri%2C+Bouzgarne&rft.au=Mohamed%2C+Youssfi&rft.au=Omar%2C+Bouattane&rft.au=Latifa%2C+El+Madani&rft.date=2024-06-01&rft.issn=2088-8708&rft.eissn=2722-2578&rft.volume=14&rft.issue=3&rft.spage=3197&rft_id=info:doi/10.11591%2Fijece.v14i3.pp3197-3207&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijece_v14i3_pp3197_3207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon