Field-programmable gate array implementation of efficient deep neural network architecture
Deep neural network (DNN) comprises multiple stages of data processing sub-systems with one of the primary sub-systems is a fully connected neural network (FCNN) model. This fully connected neural network model has multiple layers of neurons that need to be implemented using arithmetic units with su...
Uloženo v:
| Vydáno v: | International journal of electrical and computer engineering (Malacca, Malacca) Ročník 14; číslo 4; s. 3863 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.08.2024
|
| ISSN: | 2088-8708, 2722-2578 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Deep neural network (DNN) comprises multiple stages of data processing sub-systems with one of the primary sub-systems is a fully connected neural network (FCNN) model. This fully connected neural network model has multiple layers of neurons that need to be implemented using arithmetic units with suitable number representation to optimize area, power, and speed. In this work, the network parameters are analyzed, and redundancy in weights is eliminated. A pipelined and parallel structure is designed for the fully connected network information. The proposed FCNN structure has 16 inputs, 3 hidden layers, and an output layer. Each hidden layer consists of 4 neurons and describes how the inputs are connected to hidden layer neurons to process the raw data. A hardware description language (HDL) model is developed for the proposed structure and the verified model is implemented on Xilinx field-programmable gate array (FPGA). The modified structure comprises registers, demultiplexers, weight registers, multipliers, adders, and read-only memory lookup table (ROM/LUT). The modified architecture implemented on FPGA is estimated to reduce area by 87.5% and improve timing by 3x compared with direct implementation methods. |
|---|---|
| AbstractList | Deep neural network (DNN) comprises multiple stages of data processing sub-systems with one of the primary sub-systems is a fully connected neural network (FCNN) model. This fully connected neural network model has multiple layers of neurons that need to be implemented using arithmetic units with suitable number representation to optimize area, power, and speed. In this work, the network parameters are analyzed, and redundancy in weights is eliminated. A pipelined and parallel structure is designed for the fully connected network information. The proposed FCNN structure has 16 inputs, 3 hidden layers, and an output layer. Each hidden layer consists of 4 neurons and describes how the inputs are connected to hidden layer neurons to process the raw data. A hardware description language (HDL) model is developed for the proposed structure and the verified model is implemented on Xilinx field-programmable gate array (FPGA). The modified structure comprises registers, demultiplexers, weight registers, multipliers, adders, and read-only memory lookup table (ROM/LUT). The modified architecture implemented on FPGA is estimated to reduce area by 87.5% and improve timing by 3x compared with direct implementation methods. |
| Author | Kumar Reddy, Pottipati Dileep Ramanaiah, Kota Venkata |
| Author_xml | – sequence: 1 givenname: Pottipati Dileep orcidid: 0009-0008-2349-867X surname: Kumar Reddy fullname: Kumar Reddy, Pottipati Dileep – sequence: 2 givenname: Kota Venkata orcidid: 0009-0007-5371-3628 surname: Ramanaiah fullname: Ramanaiah, Kota Venkata |
| BookMark | eNot0M9OAyEQBnBiNLHWvgMvQAUWFvZoGqsmTbzoxQuBYbai-y_sVtO3d209fZPJN3P43ZDLru-QECr4Wghdibv0iYDrb6GSWg9DYcuCFdboC7KQRkomtbGX88ytZdZwe01W45gCV8oobkq9IO_bhE1kQ-732betDw3SvZ-Q-pz9kaZ2aLDFbvJT6jva1xTrOkGaNzQiDrTDQ_bNHNNPn7_mK_hIE8J0yHhLrmrfjLj6zyV52z68bp7Y7uXxeXO_YyDKSjMoqliZiOBlxBAArEYpdCFjkAGFitxKoYKoECOHkkOFZY3Ge9BzC2yxJPb8F3I_jhlrN-TU-nx0grsTkzsxuROTOzO5P6biF2rqY5U |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.11591/ijece.v14i4.pp3863-3875 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2722-2578 |
| ExternalDocumentID | 10_11591_ijece_v14i4_pp3863_3875 |
| GroupedDBID | .4S .DC 8FE 8FG AAKDD AAYXX ABJCF ABUWG AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION EOJEC HCIFZ I-F K6V K7- KWQ L6V M7S OBODZ OK1 P62 PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS TUS |
| ID | FETCH-LOGICAL-c1695-c39d97deca2debbcc85e21532db2be14d08214b19eed0c60c9e6fe7aac5153c83 |
| ISSN | 2088-8708 |
| IngestDate | Sat Nov 29 02:39:47 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1695-c39d97deca2debbcc85e21532db2be14d08214b19eed0c60c9e6fe7aac5153c83 |
| ORCID | 0009-0007-5371-3628 0009-0008-2349-867X |
| OpenAccessLink | http://doi.org/10.11591/ijece.v14i4.pp3863-3875 |
| ParticipantIDs | crossref_primary_10_11591_ijece_v14i4_pp3863_3875 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of electrical and computer engineering (Malacca, Malacca) |
| PublicationYear | 2024 |
| SSID | ssib044740765 ssj0000866295 |
| Score | 2.2824655 |
| Snippet | Deep neural network (DNN) comprises multiple stages of data processing sub-systems with one of the primary sub-systems is a fully connected neural network... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 3863 |
| Title | Field-programmable gate array implementation of efficient deep neural network architecture |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044740765 issn: 2088-8708 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: P5Z dateStart: 20110901 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: K7- dateStart: 20110901 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: East & South Asia Database customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: BVBZV dateStart: 20110901 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: M7S dateStart: 20110901 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: BENPR dateStart: 20110901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwoE9IJ5ieckHblGWxnHi-IjQrpDQrvawoBWXyI-JVChpVEK1XPh9_CzGdpK6rBAPiUsUWe0o7Xz5Zmx_MybkOa9KiXHOpsLi28SVMKnmJaTMlpJp0MY02h82IU5Pq4sLeTabfR9rYTZL0bbV5aXs_qurcQyd7Upn_8Ldk1EcwHt0Ol7R7Xj9I8cfO01aOuiuPvnKKLdUlqj1Wn11VZGDYHxMFcE3kXCSAAvQJa7BJbqtDfLwJN5oiBPZ3ZXEqP9EOFdn6kFghlMjEtg2PnRZ7YlaKnRrKBcabnd13-h5GyLA2arvvfIbCXqJz7jdm3La24XyK0NvVr1K3kH7MRTbTUsZjE9CuoHxGFIe0vM8EDKEMYGzZccrO5TNI2jyiH_zKtDl1cBQSBcZFh_AwOEm4wt-2HXu0665cLENhqMA4KcYOSkX_ZwJbdXeUu0t1cFS7SxdI9eZKKQTF558OxqZjXOBE-dhP9nnCFVZMn8k0PSbR5kZGn_xi8eMcqcoCTq_TW4Nsxf6MqDuDplBe5fsRz0t75H3V_FHHf6oxx_dxR9dNXTCH3X4owF_dMAfjfF3n7w9Pjp_9TodDvBITVbKIjVIAlJYMIpZ0PjeVwVgipkzq5EHMm4x_8y4ziQmanNTzo2EsgGhlMEsOzdV_oDstasWHhJqpVJcFIWFRnHNSj0vGpsrMDidzxoNByQb_5q6C31a6t_56tE_fOcxublF7hOy16-_wFNyw2z6xef1M-_0H22QlzA |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Field-programmable+gate+array+implementation+of+efficient+deep+neural+network+architecture&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Kumar+Reddy%2C+Pottipati+Dileep&rft.au=Ramanaiah%2C+Kota+Venkata&rft.date=2024-08-01&rft.issn=2088-8708&rft.eissn=2722-2578&rft.volume=14&rft.issue=4&rft.spage=3863&rft_id=info:doi/10.11591%2Fijece.v14i4.pp3863-3875&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijece_v14i4_pp3863_3875 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon |