Estimating Alzheimer's Disease Progression Score Using Machine Learning on FreeSurfer‐Derived MRI Gray Matter Volumes

Background The early diagnosis and monitoring of Alzheimer's disease (AD) presents a significant challenge due to its heterogeneous nature, which includes variability in cognitive symptoms, diagnostic test results, and progression rates. This study aims to enhance the understanding of AD progre...

Full description

Saved in:
Bibliographic Details
Published in:Alzheimer's & dementia Vol. 20; no. S2
Main Authors: Sung, Junhyoun, Shibata, Dean, Chan, Kwun Chuen Gary, Shui, Lan, Haynor, David R.
Format: Journal Article
Language:English
Published: Hoboken John Wiley and Sons Inc 01.12.2024
Subjects:
ISSN:1552-5260, 1552-5279
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background The early diagnosis and monitoring of Alzheimer's disease (AD) presents a significant challenge due to its heterogeneous nature, which includes variability in cognitive symptoms, diagnostic test results, and progression rates. This study aims to enhance the understanding of AD progression by integrating neuroimaging metrics with demographic data using a novel machine learning technique. Method We used supervised Variational Autoencoders (VAEs), a generative AI method, to analyze high‐dimensional neuroimaging data for AD progression, incorporating age and gender as covariates. We used two non‐overlapping datasets: 257 samples from ADNI3 and 676 from ADNI2, analyzing 68 cortical and 48 subcortical grey matter volumes extracted from their MRI 3D T1 images. The VAE model aimed to minimize reconstruction error (MSE), Kullback‐Leibler divergence, and classification error, and to estimate latent variables for each subject. A Disease Progression Score (DPS) was calculated by encoding the extracted imaging features into a latent space and projecting test data onto a trajectory curve. The study used stratified sampling for robustness and assessed the model's performance using the area under the ROC curve (AUC), and correlated the mean DPS with cognitive assessment scores by applying Kendall’s Tau. Result The VAE model demonstrated excellent discriminative power in classifying AD progression stages, with ROC AUC values near 1, particularly when using all 116 features. Cortical volumes were more predictive than subcortical volumes. The mean DPS showed a statistically significant correlation with cognitive assessments (p<0.01), with Kendall's Tau values of 0.66 for CDR‐SB, ‐0.45 for MMSE, and ‐0.49 for MoCA, indicating its validity as a quantitative biomarker for cognitive decline in AD. Conclusion Supervised VAEs can effectively model the progression of Alzheimer’s disease brain atrophy on MRI and could potentially serve as imaging biomarkers in clinical trials. The strong correlation between the DPS and cognitive assessments highlights the potential of supervised VAEs to provide a quantifiable measure of AD severity, which would be useful for clinical assessments and for objectively monitoring disease progression. The study's methodology and findings contribute to computational neuroscience and offer a foundation for future research in early detection and personalized treatment strategies for Alzheimer's disease.
AbstractList Background The early diagnosis and monitoring of Alzheimer's disease (AD) presents a significant challenge due to its heterogeneous nature, which includes variability in cognitive symptoms, diagnostic test results, and progression rates. This study aims to enhance the understanding of AD progression by integrating neuroimaging metrics with demographic data using a novel machine learning technique. Method We used supervised Variational Autoencoders (VAEs), a generative AI method, to analyze high‐dimensional neuroimaging data for AD progression, incorporating age and gender as covariates. We used two non‐overlapping datasets: 257 samples from ADNI3 and 676 from ADNI2, analyzing 68 cortical and 48 subcortical grey matter volumes extracted from their MRI 3D T1 images. The VAE model aimed to minimize reconstruction error (MSE), Kullback‐Leibler divergence, and classification error, and to estimate latent variables for each subject. A Disease Progression Score (DPS) was calculated by encoding the extracted imaging features into a latent space and projecting test data onto a trajectory curve. The study used stratified sampling for robustness and assessed the model's performance using the area under the ROC curve (AUC), and correlated the mean DPS with cognitive assessment scores by applying Kendall’s Tau. Result The VAE model demonstrated excellent discriminative power in classifying AD progression stages, with ROC AUC values near 1, particularly when using all 116 features. Cortical volumes were more predictive than subcortical volumes. The mean DPS showed a statistically significant correlation with cognitive assessments (p<0.01), with Kendall's Tau values of 0.66 for CDR‐SB, ‐0.45 for MMSE, and ‐0.49 for MoCA, indicating its validity as a quantitative biomarker for cognitive decline in AD. Conclusion Supervised VAEs can effectively model the progression of Alzheimer’s disease brain atrophy on MRI and could potentially serve as imaging biomarkers in clinical trials. The strong correlation between the DPS and cognitive assessments highlights the potential of supervised VAEs to provide a quantifiable measure of AD severity, which would be useful for clinical assessments and for objectively monitoring disease progression. The study's methodology and findings contribute to computational neuroscience and offer a foundation for future research in early detection and personalized treatment strategies for Alzheimer's disease.
Author Haynor, David R.
Sung, Junhyoun
Chan, Kwun Chuen Gary
Shibata, Dean
Shui, Lan
AuthorAffiliation 2 National Alzheimer's Coordinating Center, University of Washington, Seattle, WA USA
3 The University of Texas MD Anderson Cancer Center, Houston, TX USA
1 University of Washington, Seattle, WA USA
AuthorAffiliation_xml – name: 2 National Alzheimer's Coordinating Center, University of Washington, Seattle, WA USA
– name: 1 University of Washington, Seattle, WA USA
– name: 3 The University of Texas MD Anderson Cancer Center, Houston, TX USA
Author_xml – sequence: 1
  givenname: Junhyoun
  surname: Sung
  fullname: Sung, Junhyoun
  email: jsung13@uw.edu
  organization: University of Washington, Seattle, WA
– sequence: 2
  givenname: Dean
  surname: Shibata
  fullname: Shibata, Dean
  organization: National Alzheimer's Coordinating Center, University of Washington, Seattle, WA
– sequence: 3
  givenname: Kwun Chuen Gary
  surname: Chan
  fullname: Chan, Kwun Chuen Gary
  organization: National Alzheimer's Coordinating Center, University of Washington, Seattle, WA
– sequence: 4
  givenname: Lan
  surname: Shui
  fullname: Shui, Lan
  organization: The University of Texas MD Anderson Cancer Center, Houston, TX
– sequence: 5
  givenname: David R.
  surname: Haynor
  fullname: Haynor, David R.
  organization: University of Washington, Seattle, WA
BookMark eNp9kM1Kw0AUhQepYFvd-ASzE4TUmfzMJCsp_bOQotjqws0wSW7akfyUmbSlXfkIPqNPYkpKwY2re7nnOwfu6aBWURaA0C0lPUqI_SCzQ4_4nDLnArWp59mWZ_Ogdd4ZuUIdYz4JcYlPvTbajUylclmpYon72WEFKgd9Z_BQGZAG8IsulxqMUWWB53GpAb-ZIzuT8UoVgEOQujgean2sAeYbnYL--foeglZbSPDsdYonWu5rR1WBxu9ltsnBXKPLVGYGbk6zixbj0WLwZIXPk-mgH1oxZYFjsdRjju9y7kgnAeLYKZecJQAsiQLiA4kCCPwUEkiIRyAilHkph0RyN3Zt2-mixyZ2vYlySGIoKi0zsdb1z3ovSqnEX6VQK7Est4JSTj1uszrhvkmIdWmMhvRspkQcOxd156LpvIZpA-9UBvt_SNEPP06eX8AGicw
ContentType Journal Article
Copyright 2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
Copyright_xml – notice: 2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
DBID 24P
AAYXX
CITATION
5PM
DOI 10.1002/alz.087163
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate BIOMARKERS
EISSN 1552-5279
EndPage n/a
ExternalDocumentID PMC11715726
10_1002_alz_087163
ALZ087163
Genre abstract
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1OC
1~.
1~5
24P
33P
4.4
457
4G.
53G
5VS
7-5
71M
7RV
7X7
8FI
8FJ
8P~
AAEDT
AAIKJ
AAKOC
AALRI
AAMMB
AANLZ
AAOAW
AAXLA
AAXUO
AAYCA
AAYWO
ABBQC
ABCQJ
ABCUV
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ACCMX
ACCZN
ACGFS
ACGOF
ACPOU
ACRPL
ACVFH
ACXQS
ADBBV
ADBTR
ADCNI
ADEZE
ADHUB
ADKYN
ADMUD
ADNMO
ADPDF
ADVLN
ADZMN
AEFGJ
AEIGN
AEKER
AENEX
AEUPX
AEUYR
AEVXI
AFKRA
AFPUW
AFTJW
AFWVQ
AGHFR
AGHNM
AGUBO
AGWIK
AGXDD
AGYEJ
AIDQK
AIDYY
AIGII
AITUG
AIURR
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
AMYDB
ANZVX
AZQEC
BENPR
BFHJK
BLXMC
C45
CCPQU
DCZOG
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYUFA
G-Q
GBLVA
HMCUK
HVGLF
HX~
HZ~
IHE
J1W
K9-
LATKE
LEEKS
M0R
M41
MO0
MOBAO
N9A
NAPCQ
O-L
O9-
OAUVE
OVD
OVEED
OZT
P-8
P-9
P2P
PC.
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PSYQQ
Q38
QTD
RIG
ROL
RPM
RPZ
SDF
SDG
SEL
SES
SSZ
SUPJJ
TEORI
UKHRP
~G-
9DU
AAYXX
AFFHD
CITATION
EFLBG
~HD
5PM
ID FETCH-LOGICAL-c1693-6f56384773a3de032f7a76dee6db908e0b9e98feded050eb0165f7eda74c4223
IEDL.DBID 24P
ISSN 1552-5260
IngestDate Tue Nov 25 09:07:26 EST 2025
Sat Nov 29 07:11:44 EST 2025
Mon Aug 11 05:48:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S2
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1693-6f56384773a3de032f7a76dee6db908e0b9e98feded050eb0165f7eda74c4223
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.087163
PageCount 3
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11715726
crossref_primary_10_1002_alz_087163
wiley_primary_10_1002_alz_087163_ALZ087163
PublicationCentury 2000
PublicationDate December 2024
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Alzheimer's & dementia
PublicationYear 2024
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
SSID ssj0040815
Score 2.4099395
Snippet Background The early diagnosis and monitoring of Alzheimer's disease (AD) presents a significant challenge due to its heterogeneous nature, which includes...
SourceID pubmedcentral
crossref
wiley
SourceType Open Access Repository
Index Database
Publisher
SubjectTerms Biomarkers
Title Estimating Alzheimer's Disease Progression Score Using Machine Learning on FreeSurfer‐Derived MRI Gray Matter Volumes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.087163
https://pubmed.ncbi.nlm.nih.gov/PMC11715726
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Consumer Health Database (ProQuest)
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: M0R
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/familyhealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: 7RV
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: 7X7
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley-Blackwell Open Access Collection
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: 24P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JSsQwGICD28GLCyqOGwEFQai2Sds04GVQRwVHBhURLyVN_uiAVum4oCcfwWf0ScwyMzoeBPFSCklL-femf74itJYkghQKaJBqKYKYyyTIZMQDqYWWQEzC1E7TR-z4OLu44K0htN3bC-P5EP0FN-sZLl5bBxdFZ-sLGipuXjdDW-7TYTQaRZRZmyZxqxeHY5PsEkdLTezrVhr24aRk6-vagXT0sy3ye7nq8k1j8n9POoUmunUmrnvDmEZDUM6g5z3j0LZELa9w_eb1Gtq3UK138K7_SoNbtlnLgzrwqeVbYtdRgJuu4xJwF8Z6hc14owI4faw0VB9v77vGjp9A4ebJId6vxAtuOmwnPnexrzOLzhp7ZzsHQffPC4G0cBajuMT4ZcwYFVRBSIlmgqUKIFUFDzMICw4806BAhUkIhd0TpRkowWIZm4JjDo2UdyXMIxwZG6Cx5CAoj4uMC5lKpXgEWgAtJKmh1Z7883vP18g9SZnkRm65l1sNZQOq6U-1cOzBkbJ97SDZUcSihJG0hjacbn65e14_uvRnC3-ZvIjGialwfG_LEhp5qB5hGY3Jp4d2p1pxtmiOzfDkE-uP6B8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1ba9swFMdF1w7Wl7VlG83Wi2CFwcCrLcuW9RjapilLQljCKHsxsnSUBFpvOG1G89SP0M_YT1Jdcmn2MBh7M0g2RuccnWPpr58ROkoSQQoFcZBqKQLKZRJkMuKB1EJLICZhamfpFut0sstL3p1pc-xZGM-HWCy42chw87UNcLsgfbykhoqr6ZfQ1vvxC7RBTVqyij5Cu_OJmJpslzhcamK_t9JwQSclx8t7V_LRn7rI5_WqSziNrf981W30elZp4rp3jR20BuUb9PvMhLQtUssBrl9NhzC6hurTGJ_6fRrctXItj-rAPUu4xE5TgNtOcwl4hmMdYNPeqAB6t5WG6vH-4dR48gQUbn-7wOeVuMNtB-7E393sN36L-o2z_kkzmP17IZAWz2JMl5jIpIzFIlYQxkQzwVIFkKqChxmEBQeeaVCgwiSEwp6K0gyUYFRSU3K8Q-vlzxJ2EY6MF8RUchAxp0XGhUylUjwCLSAuJKmhj3MD5L88YSP3LGWSm3HL_bjVULZim0VXi8debSlHQ4fJjiIWJYykNfTZGecvT8_rrR_-6v2_dD5Er5r9ditvXXS-fkCbxNQ7Xumyh9ZvqlvYRy_l5GY0rg6cYz4BLU_rEw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bStxAGMeH1krxRiu2uFrtgIIgpCaTmUzmcnFdFXeXRUWkN2Ey840uaJSsB_Sqj9Bn7JM4h3V1vRBK7wIzCWG-Y5L__ILQOmOSlBrSKDNKRlQoFuUqEZEy0iggtmAab-kO7_Xy01PRH2lz3F6YwIcYv3BzkeHztQtwuNZm64UaKi8ef8au308_ok-UcR-XhPafEzG11Y55XCpzz1tZPKaTkq2Xcyfq0Vtd5Ot-1Rec9tx_3uoXNDvqNHEzuMY8-gDVArrfsSHtmtTqDDcvHs9hcAn1xhC3wnca3HdyrYDqwEeOcIm9pgB3veYS8AjHeobteLsGOLqtDdR_f_9pWU--A427h_t4t5YPuOvBnfjEZ7_hV3Tc3jne3otG_16IlMOzWNMxG5mU81SmGuKUGC55pgEyXYo4h7gUIHIDGnTMYijdrijDQUtOFbUtxzc0VV1VsIhwYr0gpUqATAUtcyFVprQWCRgJaalIA609G6C4DoSNIrCUSWHXrQjr1kD5hG3GUx0ee3KkGpx7THaS8IRxkjXQpjfOO1cvmp1f4WjpXyb_QJ_7rXbR2e8dLKMZYtudIHT5jqZu6ltYQdPq7mYwrFe9Xz4B2fLqjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Alzheimer%27s+Disease+Progression+Score+Using+Machine+Learning+on+FreeSurfer%E2%80%90Derived+MRI+Gray+Matter+Volumes&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Sung%2C+Junhyoun&rft.au=Shibata%2C+Dean&rft.au=Chan%2C+Kwun+Chuen+Gary&rft.au=Shui%2C+Lan&rft.date=2024-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=20&rft.issue=S2&rft_id=info:doi/10.1002%2Falz.087163&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_alz_087163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon