Short-term Prediction of Wind and Photovoltaic Power Based on the Fusion of Attention Mechanism and Improved Whale Optimization Algorithm

With the aim of enhancing the accuracy of predictions and stability of wind and solar power generation prediction models in different scenarios, a deep learning hybrid prediction model integrating the attention mechanism and the improved whale optimization algorithm is proposed. Firstly, Pearson cor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 3135; číslo 1; s. 12021 - 12026
Hlavní autoři: Zou, Jin, Ye, Jiaqing, Xue, Zhiliang, Zhang, Li, Wu, Feiyun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.11.2025
Témata:
ISSN:1742-6588, 1742-6596, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the aim of enhancing the accuracy of predictions and stability of wind and solar power generation prediction models in different scenarios, a deep learning hybrid prediction model integrating the attention mechanism and the improved whale optimization algorithm is proposed. Firstly, Pearson correlation analysis is employed to measure the association between each feature and wind and solar power in order to select the meteorological features with stronger correlation. Secondly, given the limitations of traditional long short-term memory (LSTM) and Gate Recurrent Unit (GRU) models in power prediction, the LSTM-GRU hybrid prediction model is adopted for accurate short-term power prediction of wind and solar power. Then, a hybrid prediction model integrating the Attention mechanism (Attention) and the improved whale algorithm (IWOA) is put forward to enhance accuracy of wind and solar energy forecasts; Finally, the historical data of a certain new energy base in northwest China was taken as the experimental data, and the Attention-IWOA-LSTM-GRU model was used for prediction. The outcomes of the simulation indicate that, compared with the prediction effects of other models in the circumstances involving abrupt fluctuations in wind velocity and light intensity, the prediction accuracy of the Attention-IWOA-LSTM-GRU model is higher.
AbstractList With the aim of enhancing the accuracy of predictions and stability of wind and solar power generation prediction models in different scenarios, a deep learning hybrid prediction model integrating the attention mechanism and the improved whale optimization algorithm is proposed. Firstly, Pearson correlation analysis is employed to measure the association between each feature and wind and solar power in order to select the meteorological features with stronger correlation. Secondly, given the limitations of traditional long short-term memory (LSTM) and Gate Recurrent Unit (GRU) models in power prediction, the LSTM-GRU hybrid prediction model is adopted for accurate short-term power prediction of wind and solar power. Then, a hybrid prediction model integrating the Attention mechanism (Attention) and the improved whale algorithm (IWOA) is put forward to enhance accuracy of wind and solar energy forecasts; Finally, the historical data of a certain new energy base in northwest China was taken as the experimental data, and the Attention-IWOA-LSTM-GRU model was used for prediction. The outcomes of the simulation indicate that, compared with the prediction effects of other models in the circumstances involving abrupt fluctuations in wind velocity and light intensity, the prediction accuracy of the Attention-IWOA-LSTM-GRU model is higher.
Author Wu, Feiyun
Ye, Jiaqing
Xue, Zhiliang
Zou, Jin
Zhang, Li
Author_xml – sequence: 1
  givenname: Jin
  surname: Zou
  fullname: Zou, Jin
  organization: State Grid Ningbo Electric Power Supply Company Ningbo, China
– sequence: 2
  givenname: Jiaqing
  surname: Ye
  fullname: Ye, Jiaqing
  organization: State Grid Ningbo Electric Power Supply Company Ningbo, China
– sequence: 3
  givenname: Zhiliang
  surname: Xue
  fullname: Xue, Zhiliang
  organization: State Grid Ningbo Electric Power Supply Company Ningbo, China
– sequence: 4
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  organization: State Grid Ningbo Electric Power Supply Company Ningbo, China
– sequence: 5
  givenname: Feiyun
  surname: Wu
  fullname: Wu, Feiyun
  organization: China Three Gorges University College of Electrical Engineering and New Energy, Yichang 443002, China
BookMark eNqFkGFPAiEch1mrLbU-Q2y9voTjDvCluSw3m27VfMk45Dqcdxigrb5B3zr0nL3svzHY-D0_2NMF541tNAA3GN1hxHkfsyxNaD6gfYJJ3sd9hFOU4jPQOd2cn86cX4Ku9yuESBzWAT8vlXUhCdrVcO700qhgbANtCRemWUIZ17yywe7sOkij4Nx-agfvpddLGHOh0nC89UdkGIJuDvyzVpVsjK8PDZN64-wuEotKrjWcbYKpzbc8JIfrd-tMqOorcFHKtdfXx70H3sYPr6OnZDp7nIyG00RhOsBJwXLMS5ypODlBuczZEqmS8UwzSsuBlFSSFHFalLRgPM8QLzQuFU0RVQOuSQ_ctr3xTx9b7YNY2a1r4pOCpIxEexlGMcXalHLWe6dLsXGmlu5LYCT23sXeqNjbFXvvAovWeyRJSxq7-av-j_oF3JmH2g
Cites_doi 10.1016/j.asoc.2025.113345
10.1016/j.jclepro.2021.126564
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/3135/1/012021
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_3135_1_012021
JPCS_3135_1_012021
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEINN
AEJGL
AFFHD
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KQ8
LAP
N5L
N9A
O3W
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJBAE
PQGLB
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
W28
XSB
~02
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c1691-b7518f14cccc5305a57d0cf784e766f9aa6a32086bf6b785408be1fc6206c98e3
IEDL.DBID O3W
ISSN 1742-6588
1742-6596
IngestDate Thu Nov 20 00:43:42 EST 2025
Thu Nov 20 00:56:20 EST 2025
Mon Dec 01 00:07:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1691-b7518f14cccc5305a57d0cf784e766f9aa6a32086bf6b785408be1fc6206c98e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/3135/1/012021
PQID 3273012410
PQPubID 4998668
PageCount 6
ParticipantIDs crossref_primary_10_1088_1742_6596_3135_1_012021
proquest_journals_3273012410
iop_journals_10_1088_1742_6596_3135_1_012021
PublicationCentury 2000
PublicationDate 20251101
2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 20251101
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Li (JPCS_3135_1_012021bib2) 2022; 55
Yin (JPCS_3135_1_012021bib3) 2022; 48
Hossain (JPCS_3135_1_012021bib4) 2021; 296
Yuan (JPCS_3135_1_012021bib1) 2022; 43
Wang (JPCS_3135_1_012021bib6) 2025; 256
Yu (JPCS_3135_1_012021bib7) 2025; 178
Li (JPCS_3135_1_012021bib5) 2025; 256
Zhang (JPCS_3135_1_012021bib8) 2025
Chen (JPCS_3135_1_012021bib9) 2024
References_xml – start-page: 1
  year: 2025
  ident: JPCS_3135_1_012021bib8
  article-title: An Ultra-Short-Term Distributed Photovoltaic Power Forecasting Method Based on GPT
  publication-title: IEEE Transactions on Sustainable Energy
– volume: 256
  year: 2025
  ident: JPCS_3135_1_012021bib5
  article-title: Short-term multi-step wind speed forecasting with multi-feature inputs using Variational Mode Decomposition a novel artificial intelligence network and the Polar Lights Optimizer
  publication-title: Renewable Energy
– volume: 43
  start-page: 58
  year: 2022
  ident: JPCS_3135_1_012021bib1
  article-title: Short term forecasting method of photovoltaic output based on DTW-VMD-PSO-BP
  publication-title: Acta Energiae Solaris Sinica
– volume: 256
  year: 2025
  ident: JPCS_3135_1_012021bib6
  article-title: A fusion model for ultra-short-term offshore wind power forecasting: EEMD-BO-BiGRU
  publication-title: Renewable Energy
– volume: 178
  year: 2025
  ident: JPCS_3135_1_012021bib7
  article-title: Short-time photovoltaic power forecasting based on informer model integrating attention mechanism
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2025.113345
– start-page: 682
  year: 2024
  ident: JPCS_3135_1_012021bib9
  article-title: Short-term photovoltaic power generation prediction based on VMD-IGWO-LSTM
  publication-title: IEEE 4th International Conference on Digital Twins and Parallel Intelligence (DTPI)
– volume: 48
  start-page: 4342
  year: 2022
  ident: JPCS_3135_1_012021bib3
  article-title: Short term prediction of small sample photovoltaic power based on generative adversarial network and LSTM-CSO
  publication-title: High Voltage Engineering
– volume: 296
  year: 2021
  ident: JPCS_3135_1_012021bib4
  article-title: Very short-term forecasting of wind power generation using hybrid deep learning model
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2021.126564
– volume: 55
  start-page: 149
  year: 2022
  ident: JPCS_3135_1_012021bib2
  article-title: Research on distributed photovoltaic short-term power prediction method based on weather fusion and LSTM-net
  publication-title: Electric Power
SSID ssj0033337
Score 2.4098618
Snippet With the aim of enhancing the accuracy of predictions and stability of wind and solar power generation prediction models in different scenarios, a deep...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 12021
SubjectTerms Accuracy
Algorithms
Correlation analysis
Improve the whale optimization algorithm
Long short-term memory Attention mechanism
Luminous intensity
Optimization
Optimization algorithms
Pearson correlation
Photovoltaic and wind power short-term forecasting
Prediction models
Solar energy
Solar power generation
Wind speed
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6u4MVd3MnBo2Hapk3Tk4zi4MGloKJ4KWmaOAPOdJxW_4P_2ve6OIigBwOF0iYl8L2-JW8j5Eh4Rkudaca5Z8FASRWLMidlYLeJ1LiO8U1VxPUyvL6Wj49R3By4FU1YZcsTK0ad5RrPyDvcQ1oEeeOcjF8Zdo1C72rTQmOWzGOVBGzdEAdPLSfmMMI6IdJjIGnl9D4SbawXGIBfzzrc5UHH7WBCqed-k1Szg3z8g11XMqi38t_dr5LlRvuk3Zpc1siMGa2TxSoKVBcb5OO2D9o4Q25N4wm6cBA2mlv6AKY7VXDF_bzMgaWVaqBpjC3W6CkIwozCPNAlae-taJZ0y7IOpaRXBtOLB8Ww-kJ9jAErHvognOgN8KxhkwxKuy_PsOuyP9wk973zu7ML1vRqYBrL7bAU3TfW9TWMAHiICsLM0TaUvgmFsJFSQnEP7KfUijSUoCdKIAWrhecIHUnDt8jcKB-ZbUKzyNfWD1I3UqAuqRQsRKGkA4TDuTVhsEOcFpdkXJfkSCpXupQJQpkglAlCmbhJDeUOOQb8kub3LP6evt-iOF0zhXD399d7ZMnDJsFVwuI-mSsnb-aALOj3clBMDisK_QQtqefA
  priority: 102
  providerName: ProQuest
Title Short-term Prediction of Wind and Photovoltaic Power Based on the Fusion of Attention Mechanism and Improved Whale Optimization Algorithm
URI https://iopscience.iop.org/article/10.1088/1742-6596/3135/1/012021
https://www.proquest.com/docview/3273012410
Volume 3135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA-6KfjitzidkgcfrWubNk0fN9lQcFvxg01fSpombuDWsXb-D_7XXtoOGSIiGGgpJRfC5fq7u-bugtAFtaVgIhYGIbYCByXihh-bkQF-G42kZUpH5kVc77xejw2H_kouTDIrof8KHotCwQULy4A41gAb2jao69MGsYjbsBo6_1PnklcJA20OMt0ngyUaE2hekRSpiRhbxnj9PNCKhlqHWXyD6Vz3dHb-Y9a7aLu0PHGzoNhDa3K6jzbzCFCRHqCPhxFY4oZGahzM9faNXjKcKDwAtx1zuIJRkiUAZxkfCxzo49VwC5RgjKEf2JG4s0hLkmaWFWGUuCt1avE4neQjFL8wgGIwAsWE-4BXkzIRFDffXpP5OBtNDtFTp_14fWOU5zQYQpfaMSK9daMsR0BzAT-468WmUB5zpEep8jmnnNjgO0WKRh4DG5GBGChBbZMKn0lyhCrTZCqPEY59RyjHjSyfg6nEI_AOKWcmCA0hSnpuDZnLtQlnRTmOMN9GZyzUHA41h0PN4dAKCw7X0CWsSVh-munv3evLxf6iIbYGQjB2zJO_jXaKtmx9YHCevFhHlWy-kGdoQ7xn43R-jqqtdi-4P88lFu6B-wLvgttu8PwJJyjnYA
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB7tdkFw4Y1YWMAHuBE1sRPHOSBUHtVW25ZILNrl5HUcm0aiTWmyIH4Cf4bfyDgPKoQEpz1gKVKU2FbkfJ5vxp7xADzh1Gihc-0xRi0aKJnyktzPPLTbeGYC34SmOcR1Gs_n4vQ0SXfgRx8L49wqe5nYCOq81G6NfMiowyLyjf9i_dlzWaPc7mqfQqOFxZH59hVNtur55DX-36eUjt8cvzr0uqwCnnYHw3iZ22iwQaixRIh2FcW5r20sQhNzbhOluGIUNf3M8iwWqNEI_GirOfW5ToRh2O8u7IUO7APYSyez9EMv-xmWuA3BpB5yu9jeJ7z3LkOT89ezIQtYNAyGLoSVBr9x425Rrv8giIb1xtf_t_G6Adc6_ZqM2glxE3bM6hZcbvxcdXUbvr9boL3hOT4i6cZtUjlgktKSk2KVE4VXuijrEoV2rQpNUpdEjrxEqs8J1kNtmYzPq67JqK5bZ1EyMy6AuqiWTQ_tQg22OFkg_ZK3KJWXXbgrGX36iKNUL5Z34P2FjMNdGKzKlbkHJE9CbcMoCxKFCqHK0AbmSvg4NRizJo72we9xINftoSOycRYQQjroSAcd6aAjA9lCZx-eIV5kJ4Cqf1c_6FGzbbOFzP2_v34MVw6PZ1M5ncyPHsBV6lIiN-GZBzCoN-fmIVzSX-qi2jzq5geBs4uG2E-j1kVG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7BUhCX8igVlEd94EiahxPHOS6FCFRYIrVouVmOY7MrdTerTeh_4F93nGRBVYUQEpYi5eCxrJnJNzPxzBjgmAVacVUoh9LAYICSSycpvNzBuI3l2vd0qJsmrlfxYMDv7pJsCdKnWphy1kH_N3xtGwW3LOwS4riLPnTgsChhLvVp5Pqurf8MfHdWmGVYse1KrHbf0OECkSmOuC2MtIScL_K8Xl7sHyu1jDv5D6ob-5NuvNfON-Fj54GSfku1BUt6ug2rTSaoqj7B488ReuSORWySze0xjhUdKQ0ZYvhOJD7ZqKxLhLVajhXJ7DVr5BSNYUFwHvqTJH2oOpJ-XbfplORa2xLjcTVpVmh_ZSDFcIQGitwgbk26glDS_31fzsf1aLIDt-n5r-8XTndfg6Nsyx0nt0c4xg8VjghxREZx4SkT81DHjJlESiZpgDFUblgec_QVOaqDUSzwmEq4pp-hNy2nehdIkYTKhFHuJxJdJpljlMgk91B5KDU6jvbAW8hHzNq2HKI5TudcWC4Ly2VhuSx80XJ5D05QLqL7RKvXpx8sBP5MQwMLiOj0eF_ettpXWMvOUnF1OfixD-uBvUO4qWc8gF49f9CH8EH9qcfV_KhR3L_f2Oh8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+Prediction+of+Wind+and+Photovoltaic+Power+Based+on+the+Fusion+of+Attention+Mechanism+and+Improved+Whale+Optimization+Algorithm&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Zou%2C+Jin&rft.au=Ye%2C+Jiaqing&rft.au=Xue%2C+Zhiliang&rft.au=Zhang%2C+Li&rft.date=2025-11-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=3135&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F3135%2F1%2F012021&rft.externalDocID=JPCS_3135_1_012021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon