Short-term Prediction of Wind and Photovoltaic Power Based on the Fusion of Attention Mechanism and Improved Whale Optimization Algorithm
With the aim of enhancing the accuracy of predictions and stability of wind and solar power generation prediction models in different scenarios, a deep learning hybrid prediction model integrating the attention mechanism and the improved whale optimization algorithm is proposed. Firstly, Pearson cor...
Uložené v:
| Vydané v: | Journal of physics. Conference series Ročník 3135; číslo 1; s. 12021 - 12026 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Bristol
IOP Publishing
01.11.2025
|
| Predmet: | |
| ISSN: | 1742-6588, 1742-6596, 1742-6596 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | With the aim of enhancing the accuracy of predictions and stability of wind and solar power generation prediction models in different scenarios, a deep learning hybrid prediction model integrating the attention mechanism and the improved whale optimization algorithm is proposed. Firstly, Pearson correlation analysis is employed to measure the association between each feature and wind and solar power in order to select the meteorological features with stronger correlation. Secondly, given the limitations of traditional long short-term memory (LSTM) and Gate Recurrent Unit (GRU) models in power prediction, the LSTM-GRU hybrid prediction model is adopted for accurate short-term power prediction of wind and solar power. Then, a hybrid prediction model integrating the Attention mechanism (Attention) and the improved whale algorithm (IWOA) is put forward to enhance accuracy of wind and solar energy forecasts; Finally, the historical data of a certain new energy base in northwest China was taken as the experimental data, and the Attention-IWOA-LSTM-GRU model was used for prediction. The outcomes of the simulation indicate that, compared with the prediction effects of other models in the circumstances involving abrupt fluctuations in wind velocity and light intensity, the prediction accuracy of the Attention-IWOA-LSTM-GRU model is higher. |
|---|---|
| AbstractList | With the aim of enhancing the accuracy of predictions and stability of wind and solar power generation prediction models in different scenarios, a deep learning hybrid prediction model integrating the attention mechanism and the improved whale optimization algorithm is proposed. Firstly, Pearson correlation analysis is employed to measure the association between each feature and wind and solar power in order to select the meteorological features with stronger correlation. Secondly, given the limitations of traditional long short-term memory (LSTM) and Gate Recurrent Unit (GRU) models in power prediction, the LSTM-GRU hybrid prediction model is adopted for accurate short-term power prediction of wind and solar power. Then, a hybrid prediction model integrating the Attention mechanism (Attention) and the improved whale algorithm (IWOA) is put forward to enhance accuracy of wind and solar energy forecasts; Finally, the historical data of a certain new energy base in northwest China was taken as the experimental data, and the Attention-IWOA-LSTM-GRU model was used for prediction. The outcomes of the simulation indicate that, compared with the prediction effects of other models in the circumstances involving abrupt fluctuations in wind velocity and light intensity, the prediction accuracy of the Attention-IWOA-LSTM-GRU model is higher. |
| Author | Wu, Feiyun Ye, Jiaqing Xue, Zhiliang Zou, Jin Zhang, Li |
| Author_xml | – sequence: 1 givenname: Jin surname: Zou fullname: Zou, Jin organization: State Grid Ningbo Electric Power Supply Company Ningbo, China – sequence: 2 givenname: Jiaqing surname: Ye fullname: Ye, Jiaqing organization: State Grid Ningbo Electric Power Supply Company Ningbo, China – sequence: 3 givenname: Zhiliang surname: Xue fullname: Xue, Zhiliang organization: State Grid Ningbo Electric Power Supply Company Ningbo, China – sequence: 4 givenname: Li surname: Zhang fullname: Zhang, Li organization: State Grid Ningbo Electric Power Supply Company Ningbo, China – sequence: 5 givenname: Feiyun surname: Wu fullname: Wu, Feiyun organization: China Three Gorges University College of Electrical Engineering and New Energy, Yichang 443002, China |
| BookMark | eNqFkGFPAiEch1mrLbU-Q2y9voTjDvCluSw3m27VfMk45Dqcdxigrb5B3zr0nL3svzHY-D0_2NMF541tNAA3GN1hxHkfsyxNaD6gfYJJ3sd9hFOU4jPQOd2cn86cX4Ku9yuESBzWAT8vlXUhCdrVcO700qhgbANtCRemWUIZ17yywe7sOkij4Nx-agfvpddLGHOh0nC89UdkGIJuDvyzVpVsjK8PDZN64-wuEotKrjWcbYKpzbc8JIfrd-tMqOorcFHKtdfXx70H3sYPr6OnZDp7nIyG00RhOsBJwXLMS5ypODlBuczZEqmS8UwzSsuBlFSSFHFalLRgPM8QLzQuFU0RVQOuSQ_ctr3xTx9b7YNY2a1r4pOCpIxEexlGMcXalHLWe6dLsXGmlu5LYCT23sXeqNjbFXvvAovWeyRJSxq7-av-j_oF3JmH2g |
| Cites_doi | 10.1016/j.asoc.2025.113345 10.1016/j.jclepro.2021.126564 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1088/1742-6596/3135/1/012021 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_3135_1_012021 JPCS_3135_1_012021 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEINN AEJGL AFFHD AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KQ8 LAP N5L N9A O3W OK1 OVT P2P PHGZM PHGZT PIMPY PJBAE PQGLB RIN RNS RO9 ROL SY9 T37 TR2 TSCCA W28 XSB ~02 AAYXX CITATION 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c1691-b7518f14cccc5305a57d0cf784e766f9aa6a32086bf6b785408be1fc6206c98e3 |
| IEDL.DBID | P5Z |
| ISSN | 1742-6588 1742-6596 |
| IngestDate | Thu Nov 20 00:43:42 EST 2025 Thu Nov 20 00:56:20 EST 2025 Mon Dec 01 00:07:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1691-b7518f14cccc5305a57d0cf784e766f9aa6a32086bf6b785408be1fc6206c98e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3273012410?pq-origsite=%requestingapplication% |
| PQID | 3273012410 |
| PQPubID | 4998668 |
| PageCount | 6 |
| ParticipantIDs | crossref_primary_10_1088_1742_6596_3135_1_012021 proquest_journals_3273012410 iop_journals_10_1088_1742_6596_3135_1_012021 |
| PublicationCentury | 2000 |
| PublicationDate | 20251101 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 20251101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2025 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Li (JPCS_3135_1_012021bib2) 2022; 55 Yin (JPCS_3135_1_012021bib3) 2022; 48 Hossain (JPCS_3135_1_012021bib4) 2021; 296 Yuan (JPCS_3135_1_012021bib1) 2022; 43 Wang (JPCS_3135_1_012021bib6) 2025; 256 Yu (JPCS_3135_1_012021bib7) 2025; 178 Li (JPCS_3135_1_012021bib5) 2025; 256 Zhang (JPCS_3135_1_012021bib8) 2025 Chen (JPCS_3135_1_012021bib9) 2024 |
| References_xml | – start-page: 1 year: 2025 ident: JPCS_3135_1_012021bib8 article-title: An Ultra-Short-Term Distributed Photovoltaic Power Forecasting Method Based on GPT publication-title: IEEE Transactions on Sustainable Energy – volume: 256 year: 2025 ident: JPCS_3135_1_012021bib5 article-title: Short-term multi-step wind speed forecasting with multi-feature inputs using Variational Mode Decomposition a novel artificial intelligence network and the Polar Lights Optimizer publication-title: Renewable Energy – volume: 43 start-page: 58 year: 2022 ident: JPCS_3135_1_012021bib1 article-title: Short term forecasting method of photovoltaic output based on DTW-VMD-PSO-BP publication-title: Acta Energiae Solaris Sinica – volume: 256 year: 2025 ident: JPCS_3135_1_012021bib6 article-title: A fusion model for ultra-short-term offshore wind power forecasting: EEMD-BO-BiGRU publication-title: Renewable Energy – volume: 178 year: 2025 ident: JPCS_3135_1_012021bib7 article-title: Short-time photovoltaic power forecasting based on informer model integrating attention mechanism publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2025.113345 – start-page: 682 year: 2024 ident: JPCS_3135_1_012021bib9 article-title: Short-term photovoltaic power generation prediction based on VMD-IGWO-LSTM publication-title: IEEE 4th International Conference on Digital Twins and Parallel Intelligence (DTPI) – volume: 48 start-page: 4342 year: 2022 ident: JPCS_3135_1_012021bib3 article-title: Short term prediction of small sample photovoltaic power based on generative adversarial network and LSTM-CSO publication-title: High Voltage Engineering – volume: 296 year: 2021 ident: JPCS_3135_1_012021bib4 article-title: Very short-term forecasting of wind power generation using hybrid deep learning model publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2021.126564 – volume: 55 start-page: 149 year: 2022 ident: JPCS_3135_1_012021bib2 article-title: Research on distributed photovoltaic short-term power prediction method based on weather fusion and LSTM-net publication-title: Electric Power |
| SSID | ssj0033337 |
| Score | 2.409777 |
| Snippet | With the aim of enhancing the accuracy of predictions and stability of wind and solar power generation prediction models in different scenarios, a deep... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 12021 |
| SubjectTerms | Accuracy Algorithms Correlation analysis Improve the whale optimization algorithm Long short-term memory Attention mechanism Luminous intensity Optimization Optimization algorithms Pearson correlation Photovoltaic and wind power short-term forecasting Prediction models Solar energy Solar power generation Wind speed |
| SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA86FXzxW5xf5MFH69pmTdPHKQ5f3AYq21tJk9QV3Drazv_B_9q7fiBDRAQDhT7kQrhLf_dLc5cj5CoKjO1LoyxmMCUHHAjiILMiW8uYR8DAVbcsNuEPBmIyCVZyYdJFDf038FpdFFypsA6IEx3g0K7FvYB3mMO8jtPB_E_MJd9gArw5rOkhGzdozKD5VVIkCgnRxHj9PNCKh1qHWXyD6dL39Hf_Y9Z7ZKdmnrRXSeyTNTM_IFtlBKjKD8nH0xSYuIVITUcZHt-gyWga0zFs26mEZzRNixTgrJCJoiMsr0ZvwQlqCv2AR9L-Mq9FekVRhVHSR4OpxUk-K0eofmGAxHgKjokOAa9mdSIo7b29pllSTGdH5KV__3z3YNV1GiyFV-1YER7dxGBVaB7gh_R8bavYF13jcx4HUnLJXNg7RWB9XwBHFJFxYsVdm6tAGHZMWvN0bk4IjbnwtNdlWjIPqKIXRFpLHQGySG2UI9rEbmwTLqrrOMLyGF2IEDUcooZD1HDohJWG2-QabBLWn2b-e_fzxthfMsxFIASyY5_-bbQzsu1iweAyefGctIpsaS7Ipnovkjy7LFfqJ46T4t0 priority: 102 providerName: IOP Publishing |
| Title | Short-term Prediction of Wind and Photovoltaic Power Based on the Fusion of Attention Mechanism and Improved Whale Optimization Algorithm |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/3135/1/012021 https://www.proquest.com/docview/3273012410 |
| Volume | 3135 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-WpoW9rN-0Wxv00Mea2FZsy08jHQ3dQxKzrSTti5EluQk0cRa7-x_2X-_OHw2l0D3UYDCyZAS_8-9OujsdwEUSGjuQRlncUEoOKhDiQW4ltpapn6AFrnplsYlgNBLTaRjVG255HVbZcGJJ1DpTtEfe5S7JIuob--vqt0VVo8i7WpfQaEGbTkmg0g2Rd98wMccrqBIiXQs1rdg8h34T64ULwOe2Lne413W6lFDqOi80VWuerV7RdamDBrvvnf0efKqtT9avxGUfPpjlAeyUUaAqP4S_P2dojVvE1ixakwuHYGNZyia4dGcS72iWFRlSWiHnikVUYo1doSLUDPuhLckGT3k9pF8UVSglGxpKL57ni_IL1TYGjpjMUDmxMXLWok4GZf3HB5x1MVscwe3g-te3G6uu1WApOm7HSsh9kyKyeHnIIdILtK3SQPRM4PtpKKUvuYvrpwQlIBBoJ4rEOKnyXdtXoTD8GLaW2dKcAEt94Wmvx7XkHpqLXphoLXWC7CK1UY44BbvBJV5VR3LEpStdiJigjAnKmKCMnbiC8hQuEb-4_j3z_3c_a1DcjNlA-Pnt11_go0tFgsuExTPYKtZP5hy21Z9inq870L66HkU_OtAa80mnlFdsi74Po7t_W_Drzw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61WxC98EYtFPABbkSbxJvEOaBqeay6aneJRFHLyXVsh43U3Ww3Kag_gT_Db2QmD1YICU49EClSlMSW5Xz5vrE94wF4kcbWjZTVDrcUkoMCQjzIndQ1KgtTtMD1oE42EU2n4vQ0TjbgRxcLQ26VHSfWRG0KTXPkfe4TFlFv3P3lhUNZo2h1tUuh0cDi0F59wyFb-Xr8Dr_vS98fvT9-e-C0WQUcTRvDOCktNGTYBjwCRLsKIuPqLBIDG4VhFisVKu6jpZ9iWyOBFo1IrZfp0HdDHQvLsd5N2BoQ2HuwlYwnyeeO-zkeUROC6Tuo7WJ9HYeddxkOOX_d63OPB32vTyGsvvebNm7mxfIPgahVb3Tnf-uvu3C7ta_ZsPkh7sGGXdyHm7Wfqy4fwPePMxxvOKRHLFnRIhUBkxUZO8kXhik8k1lRFUjalco1SyiJHHuDUm8YvofWMhtdlm2RYVU1zqJsYimAOi_ndQ3NRA2WOJmh_LIPyMrzNtyVDc-_YC9Vs_lD-HQt_fAIeotiYXeAZaEITDDgRvEADeIgTo1RJkX-VMZqT-yC2-FALptNR2TtLCCEJOhIgo4k6EhPNtDZhVeIF9kSUPnv1_c61KzLrCHz-O-Pn8Otg-PJkTwaTw-fwLZPKZHr8Mw96FWrS_sUbuivVV6unrX_B4Oz64bYT_qJRQ8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB6S7YNe0qZNaR5Ndcgxrh9ay_Jxk8a0pN0YmrK5CVmSuwvd9bJ28h_6rztjexNKCKFQgcEHjRAz8jefrJkRwFGRuiDRznjcUUoOOhDCQe4VgdWlKJCBm2F72UQyHsurqzTfgOw2F6Za9tD_EV-7QsGdCvuAOOkjh448EafC5yGP_dCn_M8o9Je23IQnVK6EVvcFn6wRmWNLusRIEpRyHef18GB_ealNnMk9qG79T_byf838FWz1DJSNOqlt2HCL1_CsjQQ19Rv4_X2KjNwjxGb5io5xyHSsKtkEt-9M45NPq6ZCWGv0zLCcrlljJ-gMLcN-yCdZdl33IqOm6cIp2TdHKcazet6O0P3KQInJFB0Uu0DcmvcJoWz062e1mjXT-Q78yM4uTz97_X0NnqGSO15BRzglWhdbjDii48QGpkzk0CVClKnWQvMI91AFroJEIleUhQtLI6JAmFQ6_hYGi2rh3gErhYxtPORW8xgpY5wW1mpbIMJo60wodyFY20ctu7Icqj1Ol1KRlhVpWZGWVag6Le_CMdpF9Z9o_Xj3g7XB72R4RICIpCfY-7fRPsDz_FOmvn4Zn-_Di4juEG7zGQ9g0Kyu3Xt4am6aWb06bBfuH_FQ6EU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+Prediction+of+Wind+and+Photovoltaic+Power+Based+on+the+Fusion+of+Attention+Mechanism+and+Improved+Whale+Optimization+Algorithm&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Zou%2C+Jin&rft.au=Ye%2C+Jiaqing&rft.au=Xue%2C+Zhiliang&rft.au=Zhang%2C+Li&rft.date=2025-11-01&rft.pub=IOP+Publishing&rft.issn=1742-6596&rft.eissn=1742-6596&rft.volume=3135&rft.issue=1&rft.spage=012021&rft_id=info:doi/10.1088%2F1742-6596%2F3135%2F1%2F012021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |