Attention mechanism‐based prediction of early tau accumulation using MRI

Background Assessing tau accumulation in early affected areas like the lateral entorhinal cortex (EC) and inferior temporal gyrus (ITG) enables early prediction of disease progression and cognitive decline. However, positron emission tomography (PET) imaging poses radiation exposure and cost concern...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Alzheimer's & dementia Ročník 20; číslo S1
Hlavní autoři: Kim, Jin‐Yang, Song, Yeong‐Hun, Lee, Wha Jin, Seong, Joon‐Kyung
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken John Wiley and Sons Inc 01.12.2024
Témata:
ISSN:1552-5260, 1552-5279
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Assessing tau accumulation in early affected areas like the lateral entorhinal cortex (EC) and inferior temporal gyrus (ITG) enables early prediction of disease progression and cognitive decline. However, positron emission tomography (PET) imaging poses radiation exposure and cost concerns. This research aims to develop a deep learning model predicting tau positivity in these regions using MRI. Method In this study, we used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, of which dataset was partitioned into train, validation, and test sets (8:1:1 ratio), encompassing a total of 1010 scans, all of whom underwent T1‐weighted magnetic resonance imaging (MRI) and [18F] flortaucipir‐PET imaging. For the T1‐weighted MRI images, FreeSurfer v7.2 was employed to perform pre‐processing and extract cortical thickness measurements. Simultaneously, [18F] flortaucipir‐PET imaging was processed to compute voxel‐wise regions of interest (ROIs) for 66 specific brain regions. Regional tau positivity was established using a cutoff at a z‐score of 1.25, with a focus on cognitive normal (CN) subjects within the train set. To predict early tau accumulation regions, we developed an attention mechanism‐based encoder‐decoder model by adopting a Transformer model into our problem setting, performing sequential predictions for each of the 66 regions. Notably, the model’s predictive performance in initial regions significantly influences subsequent predictions. Consequently, we implemented a prioritization strategy, emphasizing predictions from areas where the model demonstrated high accuracy. This approach was designed to enhance the overall predictive accuracy of the model. Result Predicting five early tau accumulation regions per hemisphere, our model achieved an average AUC of 0.84 and accuracy of 84% for the test dataset (112 participants). Notably, in critical early disease progression regions (fusiform gyrus and ITG), AUC values of 0.84, 0.85, and accuracies of 84.4%, 84% were observed. Furthermore, the proposed prioritization strategy improved performance compared to predictions using vanilla attention‐based model. Conclusion We developed an attention mechanism‐based architecture with an encoder‐decoder structure. By predicting outcomes not only based on cortical thickness values but also their cross‐attention‐based contexture information, we could achieve highly accurate tau prediction in early and challenging regions
AbstractList Background Assessing tau accumulation in early affected areas like the lateral entorhinal cortex (EC) and inferior temporal gyrus (ITG) enables early prediction of disease progression and cognitive decline. However, positron emission tomography (PET) imaging poses radiation exposure and cost concerns. This research aims to develop a deep learning model predicting tau positivity in these regions using MRI. Method In this study, we used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, of which dataset was partitioned into train, validation, and test sets (8:1:1 ratio), encompassing a total of 1010 scans, all of whom underwent T1‐weighted magnetic resonance imaging (MRI) and [18F] flortaucipir‐PET imaging. For the T1‐weighted MRI images, FreeSurfer v7.2 was employed to perform pre‐processing and extract cortical thickness measurements. Simultaneously, [18F] flortaucipir‐PET imaging was processed to compute voxel‐wise regions of interest (ROIs) for 66 specific brain regions. Regional tau positivity was established using a cutoff at a z‐score of 1.25, with a focus on cognitive normal (CN) subjects within the train set. To predict early tau accumulation regions, we developed an attention mechanism‐based encoder‐decoder model by adopting a Transformer model into our problem setting, performing sequential predictions for each of the 66 regions. Notably, the model’s predictive performance in initial regions significantly influences subsequent predictions. Consequently, we implemented a prioritization strategy, emphasizing predictions from areas where the model demonstrated high accuracy. This approach was designed to enhance the overall predictive accuracy of the model. Result Predicting five early tau accumulation regions per hemisphere, our model achieved an average AUC of 0.84 and accuracy of 84% for the test dataset (112 participants). Notably, in critical early disease progression regions (fusiform gyrus and ITG), AUC values of 0.84, 0.85, and accuracies of 84.4%, 84% were observed. Furthermore, the proposed prioritization strategy improved performance compared to predictions using vanilla attention‐based model. Conclusion We developed an attention mechanism‐based architecture with an encoder‐decoder structure. By predicting outcomes not only based on cortical thickness values but also their cross‐attention‐based contexture information, we could achieve highly accurate tau prediction in early and challenging regions
Author Lee, Wha Jin
Seong, Joon‐Kyung
Kim, Jin‐Yang
Song, Yeong‐Hun
AuthorAffiliation 3 Alzheimer’s Disease Neuroimaging Initiative, http://adni.loni.usc.edu/, CA USA
1 Korea University, Seoul Korea, Republic of (South)
2 NeuroXT, Seoul Korea, Republic of (South)
AuthorAffiliation_xml – name: 1 Korea University, Seoul Korea, Republic of (South)
– name: 2 NeuroXT, Seoul Korea, Republic of (South)
– name: 3 Alzheimer’s Disease Neuroimaging Initiative, http://adni.loni.usc.edu/, CA USA
Author_xml – sequence: 1
  givenname: Jin‐Yang
  surname: Kim
  fullname: Kim, Jin‐Yang
  email: a9613789@naver.com
  organization: Korea University, Seoul
– sequence: 2
  givenname: Yeong‐Hun
  surname: Song
  fullname: Song, Yeong‐Hun
  organization: Korea University, Seoul
– sequence: 3
  givenname: Wha Jin
  surname: Lee
  fullname: Lee, Wha Jin
  organization: NeuroXT, Seoul
– sequence: 4
  givenname: Joon‐Kyung
  surname: Seong
  fullname: Seong, Joon‐Kyung
  organization: NeuroXT, Seoul
BookMark eNp9kM1Kw0AUhQepYK1ufIKshdR7p5NJspJS_KlUBNGNm2EyuWlH8lMyiVJXPoLP6JMYm1Jw4-oeON85XM4xG5RVSYydIYwRgF_o_GMMMUcBB2yIQcD9gIfxYK8lHLFj514BBEQYDNndtGmobGxVegWZlS6tK74_vxLtKPXWNaXWbM0q80jX-cZrdOtpY9qizfXWaZ0tl9794_yEHWY6d3S6uyP2fH31NLv1Fw8389l04RuUMfg6mQiDJoIECDlkKIJECpPImBtIKcoET0OJqOMoCyOudQBJBCQFZmQojiYjdtn3rtukoNR079c6V-vaFrreqEpb9dcp7UotqzeFGCIIKbuG877B1JVzNWX7MIL63VF1O6p-xw7GHn63OW3-IdV08bLL_ADzQXmn
ContentType Journal Article
Copyright 2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
Copyright_xml – notice: 2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
CorporateAuthor ADNI
CorporateAuthor_xml – name: ADNI
DBID 24P
AAYXX
CITATION
5PM
DOI 10.1002/alz.092140
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate BASIC SCIENCE AND PATHOGENESIS
EISSN 1552-5279
EndPage n/a
ExternalDocumentID PMC11710466
10_1002_alz_092140
ALZ092140
Genre abstract
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1OC
1~.
1~5
24P
33P
4.4
457
4G.
53G
5VS
7-5
71M
7RV
7X7
8FI
8FJ
8P~
AAEDT
AAIKJ
AAKOC
AALRI
AAMMB
AANLZ
AAOAW
AAXLA
AAXUO
AAYCA
AAYWO
ABBQC
ABCQJ
ABCUV
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ACCMX
ACCZN
ACGFS
ACGOF
ACPOU
ACRPL
ACVFH
ACXQS
ADBBV
ADBTR
ADCNI
ADEZE
ADHUB
ADKYN
ADMUD
ADNMO
ADPDF
ADVLN
ADZMN
AEFGJ
AEIGN
AEKER
AENEX
AEUPX
AEUYR
AEVXI
AFKRA
AFPUW
AFTJW
AFWVQ
AGHFR
AGHNM
AGUBO
AGWIK
AGXDD
AGYEJ
AIDQK
AIDYY
AIGII
AITUG
AIURR
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
AMYDB
ANZVX
AZQEC
BENPR
BFHJK
BLXMC
C45
CCPQU
DCZOG
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYUFA
G-Q
GBLVA
HMCUK
HVGLF
HX~
HZ~
IHE
J1W
K9-
LATKE
LEEKS
M0R
M41
MO0
MOBAO
N9A
NAPCQ
O-L
O9-
OAUVE
OVD
OVEED
OZT
P-8
P-9
P2P
PC.
PGMZT
PHGZM
PHGZT
PIMPY
PSYQQ
Q38
QTD
RIG
ROL
RPM
RPZ
SDF
SDG
SEL
SES
SSZ
SUPJJ
TEORI
UKHRP
~G-
9DU
AAYXX
AFFHD
CITATION
EFLBG
PJZUB
PPXIY
~HD
5PM
ID FETCH-LOGICAL-c1690-ab34c1c80b0e120f145b64cb692c0de8f42d7611a98f782aa50b80e641fece983
IEDL.DBID 24P
ISSN 1552-5260
IngestDate Tue Nov 04 02:04:47 EST 2025
Sat Nov 29 07:19:14 EST 2025
Sun Jul 06 04:45:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S1
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1690-ab34c1c80b0e120f145b64cb692c0de8f42d7611a98f782aa50b80e641fece983
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.092140
PageCount 2
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11710466
crossref_primary_10_1002_alz_092140
wiley_primary_10_1002_alz_092140_ALZ092140
PublicationCentury 2000
PublicationDate December 2024
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Alzheimer's & dementia
PublicationYear 2024
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
SSID ssj0040815
Score 2.4104605
Snippet Background Assessing tau accumulation in early affected areas like the lateral entorhinal cortex (EC) and inferior temporal gyrus (ITG) enables early...
SourceID pubmedcentral
crossref
wiley
SourceType Open Access Repository
Index Database
Publisher
SubjectTerms Basic Science and Pathogenesis
Title Attention mechanism‐based prediction of early tau accumulation using MRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.092140
https://pubmed.ncbi.nlm.nih.gov/PMC11710466
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Consumer Health Database
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: M0R
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/familyhealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: 7X7
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: 7RV
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: 24P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA2-Fm58oGJ9EdCVMDZJk0wCboooKlpKUShuhiSTaMFOpZ26cOUn-I1-iclMH9aFIG6GgWTCcCbJvWfuzbkAHHHuWY9MbUSU4RFV2kWaGhxJxUycSuc5tCuKTcSNhmi3ZXMOnI7PwpT6EJMfbmFlFPt1WOBKD6pT0VD1_HaCJPEEYR4sYlwToXADoc3xPky9sWOFWioLdIujiTgpqU6fnTFHP9Miv7urhb25WP3fm66BlZGfCevlxFgHczbbANf1PC_TG2HXhiO_nUH38_0jWLIUvvRDzKZo7Dlog_AxzNUQKmOG3VGRLxjS5B_hbetqE9xfnN-dXUajYgqRCZGwSOma_wZGII0sJshhyjSnRnNJDEqtcJSkMcdYSeG816AUQ1ogyyl21lgpaltgIetldhtAoQXxzDmVfiwqqFapq8WEMqEZ1Y6xCjgcY5q8lJoZSamOTBKPRVJiUQFiBu5J1yB4PduSdZ4K4WuM4xCS5hVwXOD9y-hJ_eahvNv5S-ddsEy811Lmq-yBhbw_tPtgybzmnUH_oJhf_nqLWl_nxNY2
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aBb34QMX6DOhJWLubJtnkWMTSaluKVCheliSbaME-aLcePPkT_I3-EpPdtbUeBPEWSDaE2Um-mczkGwDOKbVeD4-1h4SiHhbSeBKrwOOCqDDmxvrQJi02EbZarNvl7Tw3x72FyfghZhdubmek57Xb4O5CujRnDRXPr5c-R9ZDWAYr2MKMU3OE218HMbZoR1K6VOL8LerP2ElRaf7tAh79zIv8bq-mgFPd_OdSt8BGbmnCSqYa22BJD3bATSVJsgRH2Nfu0W9v0v94e3dYFsPR2EVt0s6hgdpRH8NETKFQatrPy3xBlyj_CJt39V1wX73uXNW8vJyCp1wszBOybP-CYr70dYB8E2AiKVaScqT8WDODURzSIBCcGWs3CEF8yXxNcWC00pyV90BhMBzofQCZZMj6zjG3c2GGpYhNOUSYMEmwNIQUwdmXUKNRxpoRZfzIKLKyiDJZFAFbkPdsqKO8XuwZ9J5S6usgCF1QmhbBRSrwX2aPKo2HrHXwl8GnYK3WaTaiRr11ewjWkbVhsuyVI1BIxlN9DFbVS9KbjE9SZfsEo3PZMQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aRbz4QMX6DOhJWN2kSTY5FrVYraWIQvGyJNlEC_ZBu_XgyZ_gb_SXmOz2YT0I4m0hD8JkkpnZ-fINAMeMuahHJCbAUrOASGUDRTQKhKQ6SoR1MbTNik1E9TpvNkVjhM3xb2FyfojJDzd_MrL72h9w00vs2ZQ1VL68nYYCuwhhHiwQGiGv1Jg0xhcxcdaOZnSp1MdbLJywk-Kz6dgZe_QTF_ndX80MTmX1n0tdAysjTxOWc9VYB3OmswGuy2maAxxh2_hHv61B-_P9w9uyBPb6PmuTNXYtNJ76GKZyCKXWw_aozBf0QPkneHtX3QQPlcv786tgVE4h0D4XFkhVcrugeahCg3BoEaGKEa2YwDpMDLcEJxFDSApund8gJQ0VDw0jyBptBC9tgUKn2zHbAHLFsYudE-HmIpwomdhShAnlihJlKS2Co7FQ417OmhHn_Mg4drKIc1kUAZ-R96Srp7yebem0njPqa4Qin5RmRXCSCfyX2eNy7TH_2vlL50Ow1LioxLVq_WYXLGPnwuTglT1QSPtDsw8W9WvaGvQPMl37An8d2LU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+mechanism%E2%80%90based+prediction+of+early+tau+accumulation+using+MRI&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Kim%2C+Jin%E2%80%90Yang&rft.au=Song%2C+Yeong%E2%80%90Hun&rft.au=Lee%2C+Wha+Jin&rft.au=Seong%2C+Joon%E2%80%90Kyung&rft.date=2024-12-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=20&rft.issue=Suppl+1&rft_id=info:doi/10.1002%2Falz.092140&rft.externalDocID=PMC11710466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon