ARMBoost+: Empowering stacking, ensemble, and boosting models for network intrusion detection with dynamic rule repository
As network security threats become increasingly complex, the need for efficient and effective network intrusion detection systems (NIDS) is more important than ever. Machine learning (ML) has emerged as a promising solution for NIDS due to its ability to analyze large volumes of network traffic data...
Gespeichert in:
| Veröffentlicht in: | Journal of network and computer applications Jg. 243; S. 104292 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.11.2025
|
| Schlagworte: | |
| ISSN: | 1084-8045 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!