Virtual Prediction of Material Properties

To start working with materials, it is most important to determine the properties to ensure its suitability but sometimes it is not only difficult but also time consuming and costly affair to arrange an experimentation with the materials. To overcome this problem some free libraries of python like p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Materials today : proceedings Ročník 62; s. 2774 - 2779
Hlavný autor: Kumar, Arpan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 2022
Predmet:
ISSN:2214-7853, 2214-7853
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract To start working with materials, it is most important to determine the properties to ensure its suitability but sometimes it is not only difficult but also time consuming and costly affair to arrange an experimentation with the materials. To overcome this problem some free libraries of python like pymatgen, matminer etc. are used with Materials Application Programming Interface (API)to gather and process datasets and when combined with Machine learning libraries like Sklearn, a machine Learning Model can be built. In the present work, with the aid of glass_ternary_hipt dataset, a metallic glass formation dataset for Co-Fe-Zr, Co-Ti-Zr, Co-V-Zr and Fe-Ti-Nb ternary alloy systems, a Support Vector Machine Classifier, is built as an example to predict the glass forming ability of the alloys. The accuracy of the model is checked and a heatmap is generated to show the correlation between the features and the target. The development of these program is very intuitive with these packages and python for prediction of material properties virtually.
AbstractList To start working with materials, it is most important to determine the properties to ensure its suitability but sometimes it is not only difficult but also time consuming and costly affair to arrange an experimentation with the materials. To overcome this problem some free libraries of python like pymatgen, matminer etc. are used with Materials Application Programming Interface (API)to gather and process datasets and when combined with Machine learning libraries like Sklearn, a machine Learning Model can be built. In the present work, with the aid of glass_ternary_hipt dataset, a metallic glass formation dataset for Co-Fe-Zr, Co-Ti-Zr, Co-V-Zr and Fe-Ti-Nb ternary alloy systems, a Support Vector Machine Classifier, is built as an example to predict the glass forming ability of the alloys. The accuracy of the model is checked and a heatmap is generated to show the correlation between the features and the target. The development of these program is very intuitive with these packages and python for prediction of material properties virtually.
Author Kumar, Arpan
Author_xml – sequence: 1
  givenname: Arpan
  surname: Kumar
  fullname: Kumar, Arpan
  email: kumararpan227@gmail.com
  organization: Dept. of Computer Sc., Ramakrishna Mission Vidyamandira, Belur, Howrah, India
BookMark eNp9jz1PwzAURS1UJErpL2DJypDwnh076cCAKr6kIhgqVit2niVHbRLZBol_T9oyMDHdpyudp3su2awfemLsGqFAQHXbFfsmjaHgwHkBWAgpz9iccyzzqpZi9ue-YMsYOwBAqaBGNWc3Hz6kz2aXvQdqvU1-6LPBZa9NouCP9TBSSJ7iFTt3zS7S8jcXbPv4sF0_55u3p5f1_Sa3qOqUr6A1VW3RQVmZkhCVrUmU5IQxRkhjBRFxYcWqVIpXistpt1QWZQPc1WLBxOmtDUOMgZweg9834Vsj6IOv7vTRVx98NaCefCfq7kTRtOzLU9DReurt5BTIJt0O_l_-BzKeYCE
Cites_doi 10.1021/cm702327g
10.1016/j.commatsci.2011.02.023
10.1103/PhysRevB.84.045115
10.1016/j.micromeso.2011.08.020
10.1063/1.4960790
10.1016/j.commatsci.2018.05.018
10.1016/j.elecom.2010.01.010
10.1109/MCSE.2007.55
10.1063/1.4812323
10.1021/ci200386x
10.1016/j.commatsci.2005.04.010
10.1016/j.commatsci.2014.10.037
10.1038/sdata.2016.80
10.1016/j.susc.2013.05.016
10.1038/s41586-020-2649-2
10.1088/1742-6596/1168/2/022022
10.25080/Majora-92bf1922-00a
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.matpr.2022.01.355
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2214-7853
EndPage 2779
ExternalDocumentID 10_1016_j_matpr_2022_01_355
S221478532200400X
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
HZ~
KOM
M41
NCXOZ
O9-
OAUVE
P-8
P-9
PC.
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c168t-90db78c1f047b4e116c8e34ef3bbb35bc3eee23c394662762520256c15a02f83
ISSN 2214-7853
IngestDate Sat Nov 29 07:00:10 EST 2025
Fri Feb 23 02:37:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sklearn
Matplotlib
Pymatgen
Matminer
Materials
Classification
Support Vector Machine
Seaborn
Machine Learning
MAPI
Scikit-Learn
Python
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c168t-90db78c1f047b4e116c8e34ef3bbb35bc3eee23c394662762520256c15a02f83
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_matpr_2022_01_355
elsevier_sciencedirect_doi_10_1016_j_matpr_2022_01_355
PublicationCentury 2000
PublicationDate 2022
2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle Materials today : proceedings
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References M.L.
M.
Lukauskas
Ong, Wang, Kang, Ceder (b0030) 2008; 20
E.
Botvinnik
A.
Ying (b0110) 2019; 1168
O’Kane
https://pymatgen.org/introduction.html
Tran, Xu, Radhakrishnan, Winston, Sun, Persson, Ong (b0015) 2016; 3
https://materialsproject.org/open
Waskom
J.
Jain, Hautier, Moore, Ping Ong, Fischer, Mueller, Persson, Ceder (b0025) 2011; 50
Cole
Martin, Smit, Haranczyk (b0065) 2012; 52
Ward, Dunn, Faghaninia, Zimmermann, Bajaj, Wang, Montoya, Chen, Bystrom, Dylla, Chard, Asta, Persson, Snyder, Foster, Jain (b0075) 2018; 152
D.C.
Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (b0090) 2020; 585
Hobson
Miles
Brian
Warmenhoven
Ong, Jain, Hautier, Kang, Ceder (b0035) 2010; 12
S.
Hunter (b0095) 2007; 9
Quintero
O.
Fitzgerald
Ostblom
Vanderplas
Meyer
Villalba
K.
Sun, Ceder (b0020) 2013; 617
G.
A. https://hackingmaterials.lbl.gov/matminer/dataset_summary.html#glass-ternary-hipt
Gemperline
C.
Jain, Hautier, Ong, Moore, Fischer, Persson, Ceder (b0040) 2011; 84
McKinney, W. et. al. Data structures for statistical computing in python, in: Proceedings of the 9th Python in Science Conference, Austin, TX, 2010: pp. 51–56.
Van Rossum, Drake (b0080) 2009
Jain, Ong, Hautier, Chen, Richards, Dacek, Cholia, Gunter, Skinner, Ceder, Persson (b0045) 2013; 1
Augspurger
Qalieh
Williams
Willems, Rycroft, Kazi, Meza, Haranczyk (b0060) 2012; 149
T.
Pye
P.
Yarkoni
Kunter
Henkelman, Arnaldsson, Jónsson (b0055) 2006; 36
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b0085) 2011; 12
Bachant
D.
Martin
Halchenko
Rong, Kitchaev, Canepa, Huang, Ceder (b0010) 2016; 145
J.B.
Ruiter
Y.
Hoyer
Evans
Ong, Cholia, Jain, Brafman, Gunter, Ceder, Persson (b0050) 2015; 97
Brunner
Ram
Jain (10.1016/j.matpr.2022.01.355_b0025) 2011; 50
Martin (10.1016/j.matpr.2022.01.355_b0065) 2012; 52
Willems (10.1016/j.matpr.2022.01.355_b0060) 2012; 149
Pedregosa (10.1016/j.matpr.2022.01.355_b0085) 2011; 12
Ong (10.1016/j.matpr.2022.01.355_b0035) 2010; 12
Tran (10.1016/j.matpr.2022.01.355_b0015) 2016; 3
10.1016/j.matpr.2022.01.355_b0070
Van Rossum (10.1016/j.matpr.2022.01.355_b0080) 2009
Henkelman (10.1016/j.matpr.2022.01.355_b0055) 2006; 36
10.1016/j.matpr.2022.01.355_b0100
Sun (10.1016/j.matpr.2022.01.355_b0020) 2013; 617
Harris (10.1016/j.matpr.2022.01.355_b0090) 2020; 585
Rong (10.1016/j.matpr.2022.01.355_b0010) 2016; 145
10.1016/j.matpr.2022.01.355_b0105
10.1016/j.matpr.2022.01.355_b0005
Jain (10.1016/j.matpr.2022.01.355_b0040) 2011; 84
Ward (10.1016/j.matpr.2022.01.355_b0075) 2018; 152
Ying (10.1016/j.matpr.2022.01.355_b0110) 2019; 1168
Jain (10.1016/j.matpr.2022.01.355_b0045) 2013; 1
Ong (10.1016/j.matpr.2022.01.355_b0030) 2008; 20
Ong (10.1016/j.matpr.2022.01.355_b0050) 2015; 97
Hunter (10.1016/j.matpr.2022.01.355_b0095) 2007; 9
References_xml – reference: Ostblom
– reference: S.,
– reference: Ruiter
– reference: Gemperline
– reference: Meyer
– reference: K.,
– reference: P.,
– reference: C.,
– volume: 97
  start-page: 209
  year: 2015
  end-page: 215
  ident: b0050
  article-title: The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on Representational State Transfer (REST) principles
  publication-title: Comput. Mater. Sci.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0085
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: Journal of Machine Learning Research.
– reference: D.C.,
– reference: Williams
– volume: 617
  start-page: 53
  year: 2013
  end-page: 59
  ident: b0020
  article-title: Efficient creation and convergence of surface slabs
  publication-title: Surf. Sci.
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: b0090
  article-title: Array programming with NumPy
  publication-title: Nature
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: b0095
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Comput. Sci. Eng.
– reference: O’Kane
– reference: Y.,
– volume: 1
  start-page: 011002
  year: 2013
  ident: b0045
  article-title: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
  publication-title: APL Mater.
– volume: 12
  start-page: 427
  year: 2010
  end-page: 430
  ident: b0035
  article-title: Thermal stabilities of delithiated olivine MPO4 (M=Fe, Mn) cathodes investigated using first principles calculations
  publication-title: Electrochem commun.
– reference: Kunter
– reference: Fitzgerald
– reference: J.B.,
– reference: A. https://hackingmaterials.lbl.gov/matminer/dataset_summary.html#glass-ternary-hipt
– reference: Brian,
– reference: Evans
– reference: Augspurger
– reference: M.,
– reference: Hoyer
– volume: 145
  start-page: 74112
  year: 2016
  ident: b0010
  article-title: An efficient algorithm for finding the minimum energy path for cation migration in ionic materials
  publication-title: J. Chem. Phys.
– reference: Lukauskas
– reference: d.
– year: 2009
  ident: b0080
  article-title: Python 3 Reference Manual
– reference: Qalieh
– reference: E.,
– volume: 84
  start-page: 45115
  year: 2011
  ident: b0040
  article-title: Formation enthalpies by mixing GGA and GGA+Ucalculations
  publication-title: Phys. Rev. B
– volume: 3
  year: 2016
  ident: b0015
  article-title: Surface energies of elemental crystals
  publication-title: Sci. Data
– reference: Villalba
– reference: https://pymatgen.org/introduction.html
– reference: Halchenko
– reference: Cole
– reference: McKinney, W. et. al. Data structures for statistical computing in python, in: Proceedings of the 9th Python in Science Conference, Austin, TX, 2010: pp. 51–56.
– reference: Warmenhoven
– reference: O.,
– reference: D.,
– reference: Pye
– reference: https://materialsproject.org/open
– volume: 1168
  start-page: 022022
  year: 2019
  ident: b0110
  article-title: An Overview of Overfitting and its Solutions
  publication-title: J. Phys. Conf. Ser.
– reference: G.,
– reference: Hobson
– reference: T.,
– volume: 20
  start-page: 1798
  year: 2008
  end-page: 1807
  ident: b0030
  article-title: Li−Fe−P−O2 Phase Diagram from First Principles Calculations
  publication-title: Chem. Mater.
– reference: M.L.,
– volume: 52
  start-page: 308
  year: 2012
  end-page: 318
  ident: b0065
  article-title: Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials
  publication-title: J. Chem. Inf. Model.
– reference: Bachant
– volume: 149
  start-page: 134
  year: 2012
  end-page: 141
  ident: b0060
  article-title: Algorithms and tools for high-throughput geometry- based analysis of crystalline porous materials
  publication-title: Microporous and Mesoporous Materials
– reference: Vanderplas
– reference: Brunner
– volume: 152
  start-page: 60
  year: 2018
  end-page: 69
  ident: b0075
  article-title: Matminer: An open-source toolkit for materials data mining
  publication-title: Comput. Mater. Sci.
– reference: Quintero
– reference: Miles
– reference: Yarkoni
– volume: 50
  start-page: 2295
  year: 2011
  end-page: 2310
  ident: b0025
  article-title: A high-throughput infrastructure for density functional theory calculations
  publication-title: Comput. Mater. Sci.
– reference: Waskom
– reference: Botvinnik
– reference: Martin
– reference: A.,
– volume: 36
  start-page: 354
  year: 2006
  end-page: 360
  ident: b0055
  article-title: A fast and robust algorithm for Bader decomposition of charge density
  publication-title: Comput. Mater. Sci.
– reference: J.,
– reference: Ram
– volume: 20
  start-page: 1798
  issue: 5
  year: 2008
  ident: 10.1016/j.matpr.2022.01.355_b0030
  article-title: Li−Fe−P−O2 Phase Diagram from First Principles Calculations
  publication-title: Chem. Mater.
  doi: 10.1021/cm702327g
– volume: 50
  start-page: 2295
  issue: 8
  year: 2011
  ident: 10.1016/j.matpr.2022.01.355_b0025
  article-title: A high-throughput infrastructure for density functional theory calculations
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2011.02.023
– volume: 84
  start-page: 45115
  year: 2011
  ident: 10.1016/j.matpr.2022.01.355_b0040
  article-title: Formation enthalpies by mixing GGA and GGA+Ucalculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.045115
– volume: 149
  start-page: 134
  issue: 1
  year: 2012
  ident: 10.1016/j.matpr.2022.01.355_b0060
  article-title: Algorithms and tools for high-throughput geometry- based analysis of crystalline porous materials
  publication-title: Microporous and Mesoporous Materials
  doi: 10.1016/j.micromeso.2011.08.020
– volume: 145
  start-page: 74112
  issue: 7
  year: 2016
  ident: 10.1016/j.matpr.2022.01.355_b0010
  article-title: An efficient algorithm for finding the minimum energy path for cation migration in ionic materials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4960790
– volume: 152
  start-page: 60
  year: 2018
  ident: 10.1016/j.matpr.2022.01.355_b0075
  article-title: Matminer: An open-source toolkit for materials data mining
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.05.018
– volume: 12
  start-page: 427
  issue: 3
  year: 2010
  ident: 10.1016/j.matpr.2022.01.355_b0035
  article-title: Thermal stabilities of delithiated olivine MPO4 (M=Fe, Mn) cathodes investigated using first principles calculations
  publication-title: Electrochem commun.
  doi: 10.1016/j.elecom.2010.01.010
– ident: 10.1016/j.matpr.2022.01.355_b0070
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 10.1016/j.matpr.2022.01.355_b0095
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– ident: 10.1016/j.matpr.2022.01.355_b0005
– volume: 1
  start-page: 011002
  issue: 1
  year: 2013
  ident: 10.1016/j.matpr.2022.01.355_b0045
  article-title: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– volume: 52
  start-page: 308
  issue: 2
  year: 2012
  ident: 10.1016/j.matpr.2022.01.355_b0065
  article-title: Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci200386x
– volume: 36
  start-page: 354
  issue: 3
  year: 2006
  ident: 10.1016/j.matpr.2022.01.355_b0055
  article-title: A fast and robust algorithm for Bader decomposition of charge density
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.04.010
– volume: 97
  start-page: 209
  year: 2015
  ident: 10.1016/j.matpr.2022.01.355_b0050
  article-title: The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on Representational State Transfer (REST) principles
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2014.10.037
– volume: 3
  year: 2016
  ident: 10.1016/j.matpr.2022.01.355_b0015
  article-title: Surface energies of elemental crystals
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.80
– volume: 617
  start-page: 53
  year: 2013
  ident: 10.1016/j.matpr.2022.01.355_b0020
  article-title: Efficient creation and convergence of surface slabs
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2013.05.016
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  ident: 10.1016/j.matpr.2022.01.355_b0090
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.matpr.2022.01.355_b0085
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: Journal of Machine Learning Research.
– volume: 1168
  start-page: 022022
  year: 2019
  ident: 10.1016/j.matpr.2022.01.355_b0110
  article-title: An Overview of Overfitting and its Solutions
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1168/2/022022
– year: 2009
  ident: 10.1016/j.matpr.2022.01.355_b0080
– ident: 10.1016/j.matpr.2022.01.355_b0100
  doi: 10.25080/Majora-92bf1922-00a
– ident: 10.1016/j.matpr.2022.01.355_b0105
SSID ssj0001560816
Score 2.1757214
Snippet To start working with materials, it is most important to determine the properties to ensure its suitability but sometimes it is not only difficult but also...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 2774
SubjectTerms Classification
Machine Learning
MAPI
Materials
Matminer
Matplotlib
Pymatgen
Python
Scikit-Learn
Seaborn
Sklearn
Support Vector Machine
Title Virtual Prediction of Material Properties
URI https://dx.doi.org/10.1016/j.matpr.2022.01.355
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2214-7853
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001560816
  issn: 2214-7853
  databaseCode: AIEXJ
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT4MwFG508-DFaNQ4f4WDFxNZoC20HBczoyYuOyxmN7KWkmwHRhia_fm-0jKmLos7eCFQwoP2g_br4_V7CN0JzL2Jl3CXhoK6lCUpfFIwSxEiAZCjlCRUVMkm2GDAx-NoaLOuLap0AizL-HIZ5f8KNZQB2Hrp7A5wr4xCAewD6LAF2GH7J-Dfp0W1JmRY6H8wNSF8m5TVzfXKgFzHUtvYwTqZkz2t9R70yhDtKGjGtrUfPjYgu1fk9rWyHgO85j7E2Kcu40aet6s2lNk-0faQtlNjJpGOHSDhMNrY-Ro_wKwLVDvXUqsYa0VUYmR4v0td_xiCVoGBdczZLK6MxNpI7PkxGNlHbcyCiLdQu_fSH782njQgbbzKcbuqSi0vVQXy_XqczRRkjVaMjtGRnQ84PYPjCdpT2Sm6txg6DYbOPHVqkJwGwzM0euqPHp9dm9PClX7ISzfyEsG49FOPMkGV74eSK0JVSoQQJBCSKKUwkUTr_mMYqQKsWan0g4mHU07OUSubZ-oCOVTP9kIK9DUlNEj8iCVgLpIkkBwrL-mgh7qWcW6US-ItzdtBYd0SsSVfhlTFAO-2Cy93u88VOtRHxot1jVpl8aFu0IH8LKeL4tZi-wWuYE3C
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+Prediction+of+Material+Properties&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Kumar%2C+Arpan&rft.date=2022&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=62&rft.spage=2774&rft.epage=2779&rft_id=info:doi/10.1016%2Fj.matpr.2022.01.355&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matpr_2022_01_355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon