Virtual Prediction of Material Properties
To start working with materials, it is most important to determine the properties to ensure its suitability but sometimes it is not only difficult but also time consuming and costly affair to arrange an experimentation with the materials. To overcome this problem some free libraries of python like p...
Uložené v:
| Vydané v: | Materials today : proceedings Ročník 62; s. 2774 - 2779 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
2022
|
| Predmet: | |
| ISSN: | 2214-7853, 2214-7853 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | To start working with materials, it is most important to determine the properties to ensure its suitability but sometimes it is not only difficult but also time consuming and costly affair to arrange an experimentation with the materials. To overcome this problem some free libraries of python like pymatgen, matminer etc. are used with Materials Application Programming Interface (API)to gather and process datasets and when combined with Machine learning libraries like Sklearn, a machine Learning Model can be built. In the present work, with the aid of glass_ternary_hipt dataset, a metallic glass formation dataset for Co-Fe-Zr, Co-Ti-Zr, Co-V-Zr and Fe-Ti-Nb ternary alloy systems, a Support Vector Machine Classifier, is built as an example to predict the glass forming ability of the alloys. The accuracy of the model is checked and a heatmap is generated to show the correlation between the features and the target. The development of these program is very intuitive with these packages and python for prediction of material properties virtually. |
|---|---|
| AbstractList | To start working with materials, it is most important to determine the properties to ensure its suitability but sometimes it is not only difficult but also time consuming and costly affair to arrange an experimentation with the materials. To overcome this problem some free libraries of python like pymatgen, matminer etc. are used with Materials Application Programming Interface (API)to gather and process datasets and when combined with Machine learning libraries like Sklearn, a machine Learning Model can be built. In the present work, with the aid of glass_ternary_hipt dataset, a metallic glass formation dataset for Co-Fe-Zr, Co-Ti-Zr, Co-V-Zr and Fe-Ti-Nb ternary alloy systems, a Support Vector Machine Classifier, is built as an example to predict the glass forming ability of the alloys. The accuracy of the model is checked and a heatmap is generated to show the correlation between the features and the target. The development of these program is very intuitive with these packages and python for prediction of material properties virtually. |
| Author | Kumar, Arpan |
| Author_xml | – sequence: 1 givenname: Arpan surname: Kumar fullname: Kumar, Arpan email: kumararpan227@gmail.com organization: Dept. of Computer Sc., Ramakrishna Mission Vidyamandira, Belur, Howrah, India |
| BookMark | eNp9jz1PwzAURS1UJErpL2DJypDwnh076cCAKr6kIhgqVit2niVHbRLZBol_T9oyMDHdpyudp3su2awfemLsGqFAQHXbFfsmjaHgwHkBWAgpz9iccyzzqpZi9ue-YMsYOwBAqaBGNWc3Hz6kz2aXvQdqvU1-6LPBZa9NouCP9TBSSJ7iFTt3zS7S8jcXbPv4sF0_55u3p5f1_Sa3qOqUr6A1VW3RQVmZkhCVrUmU5IQxRkhjBRFxYcWqVIpXistpt1QWZQPc1WLBxOmtDUOMgZweg9834Vsj6IOv7vTRVx98NaCefCfq7kTRtOzLU9DReurt5BTIJt0O_l_-BzKeYCE |
| Cites_doi | 10.1021/cm702327g 10.1016/j.commatsci.2011.02.023 10.1103/PhysRevB.84.045115 10.1016/j.micromeso.2011.08.020 10.1063/1.4960790 10.1016/j.commatsci.2018.05.018 10.1016/j.elecom.2010.01.010 10.1109/MCSE.2007.55 10.1063/1.4812323 10.1021/ci200386x 10.1016/j.commatsci.2005.04.010 10.1016/j.commatsci.2014.10.037 10.1038/sdata.2016.80 10.1016/j.susc.2013.05.016 10.1038/s41586-020-2649-2 10.1088/1742-6596/1168/2/022022 10.25080/Majora-92bf1922-00a |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.matpr.2022.01.355 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2214-7853 |
| EndPage | 2779 |
| ExternalDocumentID | 10_1016_j_matpr_2022_01_355 S221478532200400X |
| GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA HZ~ KOM M41 NCXOZ O9- OAUVE P-8 P-9 PC. ROL SPC SPCBC SSM SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI ADVLN AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS |
| ID | FETCH-LOGICAL-c168t-90db78c1f047b4e116c8e34ef3bbb35bc3eee23c394662762520256c15a02f83 |
| ISSN | 2214-7853 |
| IngestDate | Sat Nov 29 07:00:10 EST 2025 Fri Feb 23 02:37:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sklearn Matplotlib Pymatgen Matminer Materials Classification Support Vector Machine Seaborn Machine Learning MAPI Scikit-Learn Python |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c168t-90db78c1f047b4e116c8e34ef3bbb35bc3eee23c394662762520256c15a02f83 |
| PageCount | 6 |
| ParticipantIDs | crossref_primary_10_1016_j_matpr_2022_01_355 elsevier_sciencedirect_doi_10_1016_j_matpr_2022_01_355 |
| PublicationCentury | 2000 |
| PublicationDate | 2022 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Materials today : proceedings |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | M.L. M. Lukauskas Ong, Wang, Kang, Ceder (b0030) 2008; 20 E. Botvinnik A. Ying (b0110) 2019; 1168 O’Kane https://pymatgen.org/introduction.html Tran, Xu, Radhakrishnan, Winston, Sun, Persson, Ong (b0015) 2016; 3 https://materialsproject.org/open Waskom J. Jain, Hautier, Moore, Ping Ong, Fischer, Mueller, Persson, Ceder (b0025) 2011; 50 Cole Martin, Smit, Haranczyk (b0065) 2012; 52 Ward, Dunn, Faghaninia, Zimmermann, Bajaj, Wang, Montoya, Chen, Bystrom, Dylla, Chard, Asta, Persson, Snyder, Foster, Jain (b0075) 2018; 152 D.C. Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (b0090) 2020; 585 Hobson Miles Brian Warmenhoven Ong, Jain, Hautier, Kang, Ceder (b0035) 2010; 12 S. Hunter (b0095) 2007; 9 Quintero O. Fitzgerald Ostblom Vanderplas Meyer Villalba K. Sun, Ceder (b0020) 2013; 617 G. A. https://hackingmaterials.lbl.gov/matminer/dataset_summary.html#glass-ternary-hipt Gemperline C. Jain, Hautier, Ong, Moore, Fischer, Persson, Ceder (b0040) 2011; 84 McKinney, W. et. al. Data structures for statistical computing in python, in: Proceedings of the 9th Python in Science Conference, Austin, TX, 2010: pp. 51–56. Van Rossum, Drake (b0080) 2009 Jain, Ong, Hautier, Chen, Richards, Dacek, Cholia, Gunter, Skinner, Ceder, Persson (b0045) 2013; 1 Augspurger Qalieh Williams Willems, Rycroft, Kazi, Meza, Haranczyk (b0060) 2012; 149 T. Pye P. Yarkoni Kunter Henkelman, Arnaldsson, Jónsson (b0055) 2006; 36 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b0085) 2011; 12 Bachant D. Martin Halchenko Rong, Kitchaev, Canepa, Huang, Ceder (b0010) 2016; 145 J.B. Ruiter Y. Hoyer Evans Ong, Cholia, Jain, Brafman, Gunter, Ceder, Persson (b0050) 2015; 97 Brunner Ram Jain (10.1016/j.matpr.2022.01.355_b0025) 2011; 50 Martin (10.1016/j.matpr.2022.01.355_b0065) 2012; 52 Willems (10.1016/j.matpr.2022.01.355_b0060) 2012; 149 Pedregosa (10.1016/j.matpr.2022.01.355_b0085) 2011; 12 Ong (10.1016/j.matpr.2022.01.355_b0035) 2010; 12 Tran (10.1016/j.matpr.2022.01.355_b0015) 2016; 3 10.1016/j.matpr.2022.01.355_b0070 Van Rossum (10.1016/j.matpr.2022.01.355_b0080) 2009 Henkelman (10.1016/j.matpr.2022.01.355_b0055) 2006; 36 10.1016/j.matpr.2022.01.355_b0100 Sun (10.1016/j.matpr.2022.01.355_b0020) 2013; 617 Harris (10.1016/j.matpr.2022.01.355_b0090) 2020; 585 Rong (10.1016/j.matpr.2022.01.355_b0010) 2016; 145 10.1016/j.matpr.2022.01.355_b0105 10.1016/j.matpr.2022.01.355_b0005 Jain (10.1016/j.matpr.2022.01.355_b0040) 2011; 84 Ward (10.1016/j.matpr.2022.01.355_b0075) 2018; 152 Ying (10.1016/j.matpr.2022.01.355_b0110) 2019; 1168 Jain (10.1016/j.matpr.2022.01.355_b0045) 2013; 1 Ong (10.1016/j.matpr.2022.01.355_b0030) 2008; 20 Ong (10.1016/j.matpr.2022.01.355_b0050) 2015; 97 Hunter (10.1016/j.matpr.2022.01.355_b0095) 2007; 9 |
| References_xml | – reference: Ostblom – reference: S., – reference: Ruiter – reference: Gemperline – reference: Meyer – reference: K., – reference: P., – reference: C., – volume: 97 start-page: 209 year: 2015 end-page: 215 ident: b0050 article-title: The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on Representational State Transfer (REST) principles publication-title: Comput. Mater. Sci. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0085 article-title: Scikit-learn: Machine Learning in Python publication-title: Journal of Machine Learning Research. – reference: D.C., – reference: Williams – volume: 617 start-page: 53 year: 2013 end-page: 59 ident: b0020 article-title: Efficient creation and convergence of surface slabs publication-title: Surf. Sci. – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: b0090 article-title: Array programming with NumPy publication-title: Nature – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: b0095 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. – reference: O’Kane – reference: Y., – volume: 1 start-page: 011002 year: 2013 ident: b0045 article-title: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation publication-title: APL Mater. – volume: 12 start-page: 427 year: 2010 end-page: 430 ident: b0035 article-title: Thermal stabilities of delithiated olivine MPO4 (M=Fe, Mn) cathodes investigated using first principles calculations publication-title: Electrochem commun. – reference: Kunter – reference: Fitzgerald – reference: J.B., – reference: A. https://hackingmaterials.lbl.gov/matminer/dataset_summary.html#glass-ternary-hipt – reference: Brian, – reference: Evans – reference: Augspurger – reference: M., – reference: Hoyer – volume: 145 start-page: 74112 year: 2016 ident: b0010 article-title: An efficient algorithm for finding the minimum energy path for cation migration in ionic materials publication-title: J. Chem. Phys. – reference: Lukauskas – reference: d. – year: 2009 ident: b0080 article-title: Python 3 Reference Manual – reference: Qalieh – reference: E., – volume: 84 start-page: 45115 year: 2011 ident: b0040 article-title: Formation enthalpies by mixing GGA and GGA+Ucalculations publication-title: Phys. Rev. B – volume: 3 year: 2016 ident: b0015 article-title: Surface energies of elemental crystals publication-title: Sci. Data – reference: Villalba – reference: https://pymatgen.org/introduction.html – reference: Halchenko – reference: Cole – reference: McKinney, W. et. al. Data structures for statistical computing in python, in: Proceedings of the 9th Python in Science Conference, Austin, TX, 2010: pp. 51–56. – reference: Warmenhoven – reference: O., – reference: D., – reference: Pye – reference: https://materialsproject.org/open – volume: 1168 start-page: 022022 year: 2019 ident: b0110 article-title: An Overview of Overfitting and its Solutions publication-title: J. Phys. Conf. Ser. – reference: G., – reference: Hobson – reference: T., – volume: 20 start-page: 1798 year: 2008 end-page: 1807 ident: b0030 article-title: Li−Fe−P−O2 Phase Diagram from First Principles Calculations publication-title: Chem. Mater. – reference: M.L., – volume: 52 start-page: 308 year: 2012 end-page: 318 ident: b0065 article-title: Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials publication-title: J. Chem. Inf. Model. – reference: Bachant – volume: 149 start-page: 134 year: 2012 end-page: 141 ident: b0060 article-title: Algorithms and tools for high-throughput geometry- based analysis of crystalline porous materials publication-title: Microporous and Mesoporous Materials – reference: Vanderplas – reference: Brunner – volume: 152 start-page: 60 year: 2018 end-page: 69 ident: b0075 article-title: Matminer: An open-source toolkit for materials data mining publication-title: Comput. Mater. Sci. – reference: Quintero – reference: Miles – reference: Yarkoni – volume: 50 start-page: 2295 year: 2011 end-page: 2310 ident: b0025 article-title: A high-throughput infrastructure for density functional theory calculations publication-title: Comput. Mater. Sci. – reference: Waskom – reference: Botvinnik – reference: Martin – reference: A., – volume: 36 start-page: 354 year: 2006 end-page: 360 ident: b0055 article-title: A fast and robust algorithm for Bader decomposition of charge density publication-title: Comput. Mater. Sci. – reference: J., – reference: Ram – volume: 20 start-page: 1798 issue: 5 year: 2008 ident: 10.1016/j.matpr.2022.01.355_b0030 article-title: Li−Fe−P−O2 Phase Diagram from First Principles Calculations publication-title: Chem. Mater. doi: 10.1021/cm702327g – volume: 50 start-page: 2295 issue: 8 year: 2011 ident: 10.1016/j.matpr.2022.01.355_b0025 article-title: A high-throughput infrastructure for density functional theory calculations publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2011.02.023 – volume: 84 start-page: 45115 year: 2011 ident: 10.1016/j.matpr.2022.01.355_b0040 article-title: Formation enthalpies by mixing GGA and GGA+Ucalculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.045115 – volume: 149 start-page: 134 issue: 1 year: 2012 ident: 10.1016/j.matpr.2022.01.355_b0060 article-title: Algorithms and tools for high-throughput geometry- based analysis of crystalline porous materials publication-title: Microporous and Mesoporous Materials doi: 10.1016/j.micromeso.2011.08.020 – volume: 145 start-page: 74112 issue: 7 year: 2016 ident: 10.1016/j.matpr.2022.01.355_b0010 article-title: An efficient algorithm for finding the minimum energy path for cation migration in ionic materials publication-title: J. Chem. Phys. doi: 10.1063/1.4960790 – volume: 152 start-page: 60 year: 2018 ident: 10.1016/j.matpr.2022.01.355_b0075 article-title: Matminer: An open-source toolkit for materials data mining publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.05.018 – volume: 12 start-page: 427 issue: 3 year: 2010 ident: 10.1016/j.matpr.2022.01.355_b0035 article-title: Thermal stabilities of delithiated olivine MPO4 (M=Fe, Mn) cathodes investigated using first principles calculations publication-title: Electrochem commun. doi: 10.1016/j.elecom.2010.01.010 – ident: 10.1016/j.matpr.2022.01.355_b0070 – volume: 9 start-page: 90 issue: 3 year: 2007 ident: 10.1016/j.matpr.2022.01.355_b0095 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – ident: 10.1016/j.matpr.2022.01.355_b0005 – volume: 1 start-page: 011002 issue: 1 year: 2013 ident: 10.1016/j.matpr.2022.01.355_b0045 article-title: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 52 start-page: 308 issue: 2 year: 2012 ident: 10.1016/j.matpr.2022.01.355_b0065 article-title: Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials publication-title: J. Chem. Inf. Model. doi: 10.1021/ci200386x – volume: 36 start-page: 354 issue: 3 year: 2006 ident: 10.1016/j.matpr.2022.01.355_b0055 article-title: A fast and robust algorithm for Bader decomposition of charge density publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.04.010 – volume: 97 start-page: 209 year: 2015 ident: 10.1016/j.matpr.2022.01.355_b0050 article-title: The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on Representational State Transfer (REST) principles publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2014.10.037 – volume: 3 year: 2016 ident: 10.1016/j.matpr.2022.01.355_b0015 article-title: Surface energies of elemental crystals publication-title: Sci. Data doi: 10.1038/sdata.2016.80 – volume: 617 start-page: 53 year: 2013 ident: 10.1016/j.matpr.2022.01.355_b0020 article-title: Efficient creation and convergence of surface slabs publication-title: Surf. Sci. doi: 10.1016/j.susc.2013.05.016 – volume: 585 start-page: 357 issue: 7825 year: 2020 ident: 10.1016/j.matpr.2022.01.355_b0090 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.matpr.2022.01.355_b0085 article-title: Scikit-learn: Machine Learning in Python publication-title: Journal of Machine Learning Research. – volume: 1168 start-page: 022022 year: 2019 ident: 10.1016/j.matpr.2022.01.355_b0110 article-title: An Overview of Overfitting and its Solutions publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1168/2/022022 – year: 2009 ident: 10.1016/j.matpr.2022.01.355_b0080 – ident: 10.1016/j.matpr.2022.01.355_b0100 doi: 10.25080/Majora-92bf1922-00a – ident: 10.1016/j.matpr.2022.01.355_b0105 |
| SSID | ssj0001560816 |
| Score | 2.1757214 |
| Snippet | To start working with materials, it is most important to determine the properties to ensure its suitability but sometimes it is not only difficult but also... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 2774 |
| SubjectTerms | Classification Machine Learning MAPI Materials Matminer Matplotlib Pymatgen Python Scikit-Learn Seaborn Sklearn Support Vector Machine |
| Title | Virtual Prediction of Material Properties |
| URI | https://dx.doi.org/10.1016/j.matpr.2022.01.355 |
| Volume | 62 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2214-7853 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001560816 issn: 2214-7853 databaseCode: AIEXJ dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT4MwFG508-DFaNQ4f4WDFxNZoC20HBczoyYuOyxmN7KWkmwHRhia_fm-0jKmLos7eCFQwoP2g_br4_V7CN0JzL2Jl3CXhoK6lCUpfFIwSxEiAZCjlCRUVMkm2GDAx-NoaLOuLap0AizL-HIZ5f8KNZQB2Hrp7A5wr4xCAewD6LAF2GH7J-Dfp0W1JmRY6H8wNSF8m5TVzfXKgFzHUtvYwTqZkz2t9R70yhDtKGjGtrUfPjYgu1fk9rWyHgO85j7E2Kcu40aet6s2lNk-0faQtlNjJpGOHSDhMNrY-Ro_wKwLVDvXUqsYa0VUYmR4v0td_xiCVoGBdczZLK6MxNpI7PkxGNlHbcyCiLdQu_fSH782njQgbbzKcbuqSi0vVQXy_XqczRRkjVaMjtGRnQ84PYPjCdpT2Sm6txg6DYbOPHVqkJwGwzM0euqPHp9dm9PClX7ISzfyEsG49FOPMkGV74eSK0JVSoQQJBCSKKUwkUTr_mMYqQKsWan0g4mHU07OUSubZ-oCOVTP9kIK9DUlNEj8iCVgLpIkkBwrL-mgh7qWcW6US-ItzdtBYd0SsSVfhlTFAO-2Cy93u88VOtRHxot1jVpl8aFu0IH8LKeL4tZi-wWuYE3C |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+Prediction+of+Material+Properties&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Kumar%2C+Arpan&rft.date=2022&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=62&rft.spage=2774&rft.epage=2779&rft_id=info:doi/10.1016%2Fj.matpr.2022.01.355&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matpr_2022_01_355 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon |