When recursion is better than iteration: A linear-time algorithm for directed acyclicity with few error vertices

Planarity, bipartiteness and (directed) acyclicity are basic graph properties with classic linear-time recognition algorithms. However, the problems of testing whether a given graph has k vertices whose deletion makes it planar, bipartite or a directed acyclic graph (DAG) are all fundamental NP-comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series B Jg. 177; S. 143 - 185
Hauptverfasser: Lokshtanov, Daniel, Ramanujan, M.S., Saurabh, Saket
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.03.2026
Schlagworte:
ISSN:0095-8956
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Planarity, bipartiteness and (directed) acyclicity are basic graph properties with classic linear-time recognition algorithms. However, the problems of testing whether a given graph has k vertices whose deletion makes it planar, bipartite or a directed acyclic graph (DAG) are all fundamental NP-complete problems when k is part of the input. As a result, a significant amount of research has been devoted to understanding whether, for every fixed k, these problems admit a polynomial-time algorithm (where the exponent in the polynomial is independent of k) and in particular, whether they admit linear-time algorithms. While we now know that for every fixed k, we can test in linear time whether a graph is k vertices away from being planar or bipartite, the best known algorithms in the case of directed acyclicity are the algorithm of Garey and Tarjan [IPL 1978], which runs in time O(nk−1⋅m) and the algorithm of Chen, Liu, Lu, O'Sullivan and Razgon [JACM 2008], which runs in time O(k!⋅4k⋅k4⋅n⋅m), where n and m are the number of vertices and arcs in the input digraph, respectively. In other words, it has remained open whether it is possible to recognize in linear time, a graph that is two vertices away from being acyclic. In this paper, we settle this question by giving an algorithm that decides whether a given graph is k vertices away from being acyclic, in time O(k!⋅4k⋅k5⋅(n+m)). That is, for every fixed k, our algorithm runs in time O(m+n), thus mirroring the case for planarity and bipartiteness. We obtain our algorithm by introducing a general methodology that shaves off a factor of n from certain algorithms that use the powerful technique of iterative compression. The two main features of our methodology are: (i) This is the first generic technique for designing linear-time FPT algorithms for directed cut problems and (ii) it can be used in combination with future improvements in algorithms for the so-called compression version of other well-studied cut problems such as Multicut and Directed Subset Feedback Vertex Set.
AbstractList Planarity, bipartiteness and (directed) acyclicity are basic graph properties with classic linear-time recognition algorithms. However, the problems of testing whether a given graph has k vertices whose deletion makes it planar, bipartite or a directed acyclic graph (DAG) are all fundamental NP-complete problems when k is part of the input. As a result, a significant amount of research has been devoted to understanding whether, for every fixed k, these problems admit a polynomial-time algorithm (where the exponent in the polynomial is independent of k) and in particular, whether they admit linear-time algorithms. While we now know that for every fixed k, we can test in linear time whether a graph is k vertices away from being planar or bipartite, the best known algorithms in the case of directed acyclicity are the algorithm of Garey and Tarjan [IPL 1978], which runs in time O(nk−1⋅m) and the algorithm of Chen, Liu, Lu, O'Sullivan and Razgon [JACM 2008], which runs in time O(k!⋅4k⋅k4⋅n⋅m), where n and m are the number of vertices and arcs in the input digraph, respectively. In other words, it has remained open whether it is possible to recognize in linear time, a graph that is two vertices away from being acyclic. In this paper, we settle this question by giving an algorithm that decides whether a given graph is k vertices away from being acyclic, in time O(k!⋅4k⋅k5⋅(n+m)). That is, for every fixed k, our algorithm runs in time O(m+n), thus mirroring the case for planarity and bipartiteness. We obtain our algorithm by introducing a general methodology that shaves off a factor of n from certain algorithms that use the powerful technique of iterative compression. The two main features of our methodology are: (i) This is the first generic technique for designing linear-time FPT algorithms for directed cut problems and (ii) it can be used in combination with future improvements in algorithms for the so-called compression version of other well-studied cut problems such as Multicut and Directed Subset Feedback Vertex Set.
Author Lokshtanov, Daniel
Ramanujan, M.S.
Saurabh, Saket
Author_xml – sequence: 1
  givenname: Daniel
  surname: Lokshtanov
  fullname: Lokshtanov, Daniel
  email: daniello@ucsb.edu
  organization: Department of Computer Science, University of California Santa Barbara, USA
– sequence: 2
  givenname: M.S.
  surname: Ramanujan
  fullname: Ramanujan, M.S.
  email: r.maadapuzhi-sridharan@warwick.ac.uk
  organization: Department of Computer Science, University of Warwick, UK
– sequence: 3
  givenname: Saket
  surname: Saurabh
  fullname: Saurabh, Saket
  email: saket@imsc.res.in
  organization: The Institute of Mathematical Sciences, HBNI, Chennai, India
BookMark eNp9kMtOwzAQRb0oEm3hB1j5BxL8iPNAbKqKl1SJDYil5Tpj6ihNqrFp1b_HVVizmhndOVczd0FmwzgAIXec5Zzx8r7LOxu3uWBC5ZznjIkZmTPWqKxuVHlNFiF0jDEpq3pODl87GCiC_cHgx4H6QLcQIyCNO5PG1JmYhAe6or0fwGAW_R6o6b9H9HG3p25E2vrkEKGlxp5t762PZ3pKKnVwooCYVo6A0VsIN-TKmT7A7V9dks_np4_1a7Z5f3lbrzaZ5WUdM-F4a3mthBKyMcq6qlDMyfRMYWwlpCwaWcithco4cNI52XJRN64s2wSUTi6JmHwtjiEgOH1Avzd41pzpS06605ec9CUnzblO1gl6nCBIlx09oA7Ww2BhelC3o_8P_wUteHcK
Cites_doi 10.1137/S0097539793251219
10.1016/j.jctb.2004.08.001
10.1016/j.jcss.2003.07.008
10.1137/S0097539792228228
10.1016/j.orl.2003.10.009
10.1145/44483.44491
10.1007/s00224-007-1345-z
10.1016/S0095-8956(03)00067-4
10.1137/130947374
10.1145/2500119
10.1145/2566616
10.1145/210332.210337
10.1137/110855247
10.1006/jctb.1995.1006
10.1137/0201010
10.1137/140961808
10.1016/0020-0190(78)90015-7
10.4153/CJM-1956-045-5
10.1145/3155299
10.1137/140962838
10.1145/3128600
10.1145/1411509.1411511
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jctb.2025.11.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 185
ExternalDocumentID 10_1016_j_jctb_2025_11_002
S0095895625000851
GrantInformation_xml – fundername: Austrian Science Fund
  grantid: P26696
  funderid: https://doi.org/10.13039/501100002428
– fundername: ERC
  grantid: 715744
– fundername: ERC
  grantid: 306992
GroupedDBID --K
--M
--Z
-DZ
-~X
.~1
0R~
186
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABDPE
ABEFU
ABFNM
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNCT
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADIYS
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEIPS
AEKER
AENEX
AETEA
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SSZ
T5K
TN5
UQL
WH7
WUQ
XPP
YQT
ZCG
ZKB
ZMT
ZU3
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c168t-2f1dc18525239a5cf7450f30024ac723349343bce7afef3ff3d1289f66d2396f3
ISSN 0095-8956
IngestDate Thu Nov 27 00:58:24 EST 2025
Sat Nov 29 17:00:29 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Feedback vertex set
Directed graphs
Fixed-parameter algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c168t-2f1dc18525239a5cf7450f30024ac723349343bce7afef3ff3d1289f66d2396f3
PageCount 43
ParticipantIDs crossref_primary_10_1016_j_jctb_2025_11_002
elsevier_sciencedirect_doi_10_1016_j_jctb_2025_11_002
PublicationCentury 2000
PublicationDate March 2026
2026-03-00
PublicationDateYYYYMMDD 2026-03-01
PublicationDate_xml – month: 03
  year: 2026
  text: March 2026
PublicationDecade 2020
PublicationTitle Journal of combinatorial theory. Series B
PublicationYear 2026
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bousquet, Daligault, Thomassé (br0030) 2018; 47
Lokshtanov, Narayanaswamy, Raman, Ramanujan, Saurabh (br0240) 2014; 11
Reed (br0300) 1992
Bodlaender (br0050) 1996; 25
Cao (br0060) 2016
Chitnis, Cygan, Hajiaghayi, Marx (br0070) 2012; vol. 7391
Fomin, Lokshtanov, Misra, Saurabh (br0170) 2012
Bodlaender (br0040) 1993
Ramanujan, Saurabh (br0340) 2017; 13
Reed, Smith, Vetta (br0350) 2004; 32
Ford, Fulkerson (br0140) 1956; 8
Lokshtanov, Ramanujan, Saurabh (br0270) 2018; 14
Robertson, Seymour (br0320) 2003; 89
Kawarabayashi, Reed (br0230) 2007
Robertson, Seymour (br0330) 2004; 92
Grohe (br0180) 2004; 68
Marx, O'Sullivan, Razgon (br0280) 2013; 9
Downey, Fellows (br0110) 1995; 24
Downey, Fellows (br0100) 1992
Chen, Liu, Lu, O'Sullivan, Razgon (br0090) 2008; 55
Lokshtanov, Ramanujan (br0250) 2012
Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh (br0080) 2015
Marx, Razgon (br0290) 2014; 43
Tarjan (br0360) 1972; 1
Garey, Tarjan (br0190) 1978; 7
Dehne, Fellows, Langston, Rosamond, Stevens (br0120) 2007; 41
Fellows, Langston (br0150) 1988; 35
Fomin, Lokshtanov, Misra, Ramanujan, Saurabh (br0160) 2015
Dorn (br0130) 2010
Jansen, Lokshtanov, Saurabh (br0210) 2014
Lokshtanov, Ramanujan, Saurabh (br0260) 2017; vol. 87
Iwata, Wahlström, Yoshida (br0200) 2016; 45
Bodlaender, Drange, Dregi, Fomin, Lokshtanov, Pilipczuk (br0020) 2016; 45
Kawarabayashi (br0220) 2009
Robertson, Seymour (br0310) 1995; 63
Alon, Yuster, Zwick (br0010) 1995; 42
Lokshtanov (10.1016/j.jctb.2025.11.002_br0270) 2018; 14
Bodlaender (10.1016/j.jctb.2025.11.002_br0040) 1993
Marx (10.1016/j.jctb.2025.11.002_br0280) 2013; 9
Downey (10.1016/j.jctb.2025.11.002_br0100) 1992
Downey (10.1016/j.jctb.2025.11.002_br0110) 1995; 24
Bodlaender (10.1016/j.jctb.2025.11.002_br0020) 2016; 45
Grohe (10.1016/j.jctb.2025.11.002_br0180) 2004; 68
Lokshtanov (10.1016/j.jctb.2025.11.002_br0250) 2012
Jansen (10.1016/j.jctb.2025.11.002_br0210) 2014
Alon (10.1016/j.jctb.2025.11.002_br0010) 1995; 42
Fomin (10.1016/j.jctb.2025.11.002_br0170) 2012
Robertson (10.1016/j.jctb.2025.11.002_br0310) 1995; 63
Cao (10.1016/j.jctb.2025.11.002_br0060) 2016
Fomin (10.1016/j.jctb.2025.11.002_br0160) 2015
Marx (10.1016/j.jctb.2025.11.002_br0290) 2014; 43
Fellows (10.1016/j.jctb.2025.11.002_br0150) 1988; 35
Chen (10.1016/j.jctb.2025.11.002_br0090) 2008; 55
Garey (10.1016/j.jctb.2025.11.002_br0190) 1978; 7
Bodlaender (10.1016/j.jctb.2025.11.002_br0050) 1996; 25
Reed (10.1016/j.jctb.2025.11.002_br0300) 1992
Cygan (10.1016/j.jctb.2025.11.002_br0080) 2015
Dorn (10.1016/j.jctb.2025.11.002_br0130) 2010
Lokshtanov (10.1016/j.jctb.2025.11.002_br0240) 2014; 11
Tarjan (10.1016/j.jctb.2025.11.002_br0360) 1972; 1
Dehne (10.1016/j.jctb.2025.11.002_br0120) 2007; 41
Ford (10.1016/j.jctb.2025.11.002_br0140) 1956; 8
Robertson (10.1016/j.jctb.2025.11.002_br0320) 2003; 89
Chitnis (10.1016/j.jctb.2025.11.002_br0070) 2012; vol. 7391
Iwata (10.1016/j.jctb.2025.11.002_br0200) 2016; 45
Kawarabayashi (10.1016/j.jctb.2025.11.002_br0230) 2007
Lokshtanov (10.1016/j.jctb.2025.11.002_br0260) 2017; vol. 87
Robertson (10.1016/j.jctb.2025.11.002_br0330) 2004; 92
Kawarabayashi (10.1016/j.jctb.2025.11.002_br0220) 2009
Bousquet (10.1016/j.jctb.2025.11.002_br0030) 2018; 47
Ramanujan (10.1016/j.jctb.2025.11.002_br0340) 2017; 13
Reed (10.1016/j.jctb.2025.11.002_br0350) 2004; 32
References_xml – volume: 92
  start-page: 325
  year: 2004
  end-page: 357
  ident: br0330
  article-title: Graph minors. XX. Wagner's conjecture
  publication-title: J. Comb. Theory, Ser. B
– volume: 47
  start-page: 166
  year: 2018
  end-page: 207
  ident: br0030
  article-title: Multicut is FPT
  publication-title: SIAM J. Comput.
– volume: 25
  start-page: 1305
  year: 1996
  end-page: 1317
  ident: br0050
  article-title: A linear-time algorithm for finding tree-decompositions of small treewidth
  publication-title: SIAM J. Comput.
– volume: 9
  start-page: 30
  year: 2013
  ident: br0280
  article-title: Finding small separators in linear time via treewidth reduction
  publication-title: ACM Trans. Algorithms
– volume: 8
  start-page: 399
  year: 1956
  end-page: 404
  ident: br0140
  article-title: Maximal flow through a network
  publication-title: Can. J. Math.
– volume: 68
  start-page: 285
  year: 2004
  end-page: 302
  ident: br0180
  article-title: Computing crossing numbers in quadratic time
  publication-title: J. Comput. Syst. Sci.
– volume: 43
  start-page: 355
  year: 2014
  end-page: 388
  ident: br0290
  article-title: Fixed-parameter tractability of multicut parameterized by the size of the cutset
  publication-title: SIAM J. Comput.
– volume: 13
  start-page: 46:1
  year: 2017
  end-page: 46:25
  ident: br0340
  article-title: Linear-time parameterized algorithms via skew-symmetric multicuts
  publication-title: ACM Trans. Algorithms
– start-page: 263
  year: 2010
  end-page: 274
  ident: br0130
  article-title: Planar subgraph isomorphism revisited
  publication-title: STACS
– volume: 42
  start-page: 844
  year: 1995
  end-page: 856
  ident: br0010
  article-title: Color-coding
  publication-title: J. ACM
– start-page: 630
  year: 2015
  end-page: 641
  ident: br0160
  article-title: Solving d-sat via backdoors to small treewidth
  publication-title: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms
– volume: 32
  start-page: 299
  year: 2004
  end-page: 301
  ident: br0350
  article-title: Finding odd cycle transversals
  publication-title: Oper. Res. Lett.
– volume: vol. 7391
  start-page: 230
  year: 2012
  end-page: 241
  ident: br0070
  article-title: Directed subset feedback vertex set is fixed-parameter tractable
  publication-title: ICALP (1)
– volume: 24
  start-page: 873
  year: 1995
  end-page: 921
  ident: br0110
  article-title: Fixed-parameter tractability and completeness I: basic results
  publication-title: SIAM J. Comput.
– volume: vol. 87
  start-page: 57:1
  year: 2017
  end-page: 57:15
  ident: br0260
  article-title: A linear-time parameterized algorithm for node unique label cover
  publication-title: 25th Annual European Symposium on Algorithms
– year: 2015
  ident: br0080
  article-title: Parameterized Algorithms
– volume: 41
  start-page: 479
  year: 2007
  end-page: 492
  ident: br0120
  article-title: An
  publication-title: Theory Comput. Syst.
– volume: 89
  start-page: 77
  year: 2003
  end-page: 108
  ident: br0320
  article-title: Graph minors. XVIII. Tree-decompositions and well-quasi-ordering
  publication-title: J. Comb. Theory, Ser. B
– volume: 1
  start-page: 146
  year: 1972
  end-page: 160
  ident: br0360
  article-title: Depth-first search and linear graph algorithms
  publication-title: SIAM J. Comput.
– start-page: 382
  year: 2007
  end-page: 390
  ident: br0230
  article-title: Computing crossing number in linear time
  publication-title: STOC
– start-page: 470
  year: 2012
  end-page: 479
  ident: br0170
  article-title: Planar f-deletion: approximation, kernelization and optimal FPT algorithms
  publication-title: 53rd Annual IEEE Symposium on Foundations of Computer Science
– start-page: 36
  year: 1992
  end-page: 49
  ident: br0100
  article-title: Fixed-parameter intractability
  publication-title: Proceedings of the Seventh Annual Structure in Complexity Theory Conference
– volume: 7
  start-page: 274
  year: 1978
  end-page: 276
  ident: br0190
  article-title: A linear-time algorithm for finding all feedback vertices
  publication-title: Inf. Process. Lett.
– start-page: 1096
  year: 2016
  end-page: 1115
  ident: br0060
  article-title: Linear recognition of almost interval graphs
  publication-title: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms
– volume: 35
  start-page: 727
  year: 1988
  end-page: 739
  ident: br0150
  article-title: Nonconstructive tools for proving polynomial-time decidability
  publication-title: J. ACM
– start-page: 226
  year: 1993
  end-page: 234
  ident: br0040
  article-title: A linear time algorithm for finding tree-decompositions of small treewidth
  publication-title: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing
– start-page: 750
  year: 2012
  end-page: 761
  ident: br0250
  article-title: Parameterized tractability of multiway cut with parity constraints
  publication-title: Automata, Languages, and Programming - 39th International Colloquium
– volume: 45
  start-page: 317
  year: 2016
  end-page: 378
  ident: br0020
  article-title: A c
  publication-title: SIAM J. Comput.
– start-page: 221
  year: 1992
  end-page: 228
  ident: br0300
  article-title: Finding approximate separators and computing tree width quickly
  publication-title: Proceedings of the 24th Annual ACM Symposium on Theory of Computing
– volume: 45
  start-page: 1377
  year: 2016
  end-page: 1411
  ident: br0200
  article-title: Half-integrality, LP-branching, and FPT algorithms
  publication-title: SIAM J. Comput.
– volume: 55
  year: 2008
  ident: br0090
  article-title: A fixed-parameter algorithm for the directed feedback vertex set problem
  publication-title: J. ACM
– start-page: 1802
  year: 2014
  end-page: 1811
  ident: br0210
  article-title: A near-optimal planarization algorithm
  publication-title: SODA
– volume: 63
  start-page: 65
  year: 1995
  end-page: 110
  ident: br0310
  article-title: Graph minors. XIII. The disjoint paths problem
  publication-title: J. Comb. Theory, Ser. B
– volume: 11
  start-page: 15:1
  year: 2014
  end-page: 15:31
  ident: br0240
  article-title: Faster parameterized algorithms using linear programming
  publication-title: ACM Trans. Algorithms
– start-page: 639
  year: 2009
  end-page: 648
  ident: br0220
  article-title: Planarity allowing few error vertices in linear time
  publication-title: FOCS
– volume: 14
  start-page: 7:1
  year: 2018
  end-page: 7:37
  ident: br0270
  article-title: Linear time parameterized algorithms for subset feedback vertex set
  publication-title: ACM Trans. Algorithms
– volume: 25
  start-page: 1305
  issue: 6
  year: 1996
  ident: 10.1016/j.jctb.2025.11.002_br0050
  article-title: A linear-time algorithm for finding tree-decompositions of small treewidth
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539793251219
– volume: 92
  start-page: 325
  issue: 2
  year: 2004
  ident: 10.1016/j.jctb.2025.11.002_br0330
  article-title: Graph minors. XX. Wagner's conjecture
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/j.jctb.2004.08.001
– start-page: 221
  year: 1992
  ident: 10.1016/j.jctb.2025.11.002_br0300
  article-title: Finding approximate separators and computing tree width quickly
– volume: 68
  start-page: 285
  issue: 2
  year: 2004
  ident: 10.1016/j.jctb.2025.11.002_br0180
  article-title: Computing crossing numbers in quadratic time
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2003.07.008
– volume: 24
  start-page: 873
  issue: 4
  year: 1995
  ident: 10.1016/j.jctb.2025.11.002_br0110
  article-title: Fixed-parameter tractability and completeness I: basic results
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539792228228
– start-page: 750
  year: 2012
  ident: 10.1016/j.jctb.2025.11.002_br0250
  article-title: Parameterized tractability of multiway cut with parity constraints
– start-page: 263
  year: 2010
  ident: 10.1016/j.jctb.2025.11.002_br0130
  article-title: Planar subgraph isomorphism revisited
– start-page: 382
  year: 2007
  ident: 10.1016/j.jctb.2025.11.002_br0230
  article-title: Computing crossing number in linear time
– volume: 32
  start-page: 299
  issue: 4
  year: 2004
  ident: 10.1016/j.jctb.2025.11.002_br0350
  article-title: Finding odd cycle transversals
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2003.10.009
– start-page: 1096
  year: 2016
  ident: 10.1016/j.jctb.2025.11.002_br0060
  article-title: Linear recognition of almost interval graphs
– volume: vol. 7391
  start-page: 230
  year: 2012
  ident: 10.1016/j.jctb.2025.11.002_br0070
  article-title: Directed subset feedback vertex set is fixed-parameter tractable
– volume: 35
  start-page: 727
  issue: 3
  year: 1988
  ident: 10.1016/j.jctb.2025.11.002_br0150
  article-title: Nonconstructive tools for proving polynomial-time decidability
  publication-title: J. ACM
  doi: 10.1145/44483.44491
– volume: 41
  start-page: 479
  issue: 3
  year: 2007
  ident: 10.1016/j.jctb.2025.11.002_br0120
  article-title: An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set problem
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-007-1345-z
– volume: 89
  start-page: 77
  issue: 1
  year: 2003
  ident: 10.1016/j.jctb.2025.11.002_br0320
  article-title: Graph minors. XVIII. Tree-decompositions and well-quasi-ordering
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/S0095-8956(03)00067-4
– volume: 45
  start-page: 317
  issue: 2
  year: 2016
  ident: 10.1016/j.jctb.2025.11.002_br0020
  article-title: A ck n 5-approximation algorithm for treewidth
  publication-title: SIAM J. Comput.
  doi: 10.1137/130947374
– start-page: 1802
  year: 2014
  ident: 10.1016/j.jctb.2025.11.002_br0210
  article-title: A near-optimal planarization algorithm
– volume: 9
  start-page: 30
  issue: 4
  year: 2013
  ident: 10.1016/j.jctb.2025.11.002_br0280
  article-title: Finding small separators in linear time via treewidth reduction
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2500119
– start-page: 630
  year: 2015
  ident: 10.1016/j.jctb.2025.11.002_br0160
  article-title: Solving d-sat via backdoors to small treewidth
– volume: 11
  start-page: 15:1
  issue: 2
  year: 2014
  ident: 10.1016/j.jctb.2025.11.002_br0240
  article-title: Faster parameterized algorithms using linear programming
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2566616
– volume: 42
  start-page: 844
  issue: 4
  year: 1995
  ident: 10.1016/j.jctb.2025.11.002_br0010
  article-title: Color-coding
  publication-title: J. ACM
  doi: 10.1145/210332.210337
– volume: 43
  start-page: 355
  issue: 2
  year: 2014
  ident: 10.1016/j.jctb.2025.11.002_br0290
  article-title: Fixed-parameter tractability of multicut parameterized by the size of the cutset
  publication-title: SIAM J. Comput.
  doi: 10.1137/110855247
– volume: 63
  start-page: 65
  issue: 1
  year: 1995
  ident: 10.1016/j.jctb.2025.11.002_br0310
  article-title: Graph minors. XIII. The disjoint paths problem
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1006/jctb.1995.1006
– volume: 1
  start-page: 146
  issue: 2
  year: 1972
  ident: 10.1016/j.jctb.2025.11.002_br0360
  article-title: Depth-first search and linear graph algorithms
  publication-title: SIAM J. Comput.
  doi: 10.1137/0201010
– volume: 47
  start-page: 166
  issue: 1
  year: 2018
  ident: 10.1016/j.jctb.2025.11.002_br0030
  article-title: Multicut is FPT
  publication-title: SIAM J. Comput.
  doi: 10.1137/140961808
– volume: vol. 87
  start-page: 57:1
  year: 2017
  ident: 10.1016/j.jctb.2025.11.002_br0260
  article-title: A linear-time parameterized algorithm for node unique label cover
– year: 2015
  ident: 10.1016/j.jctb.2025.11.002_br0080
– volume: 7
  start-page: 274
  issue: 6
  year: 1978
  ident: 10.1016/j.jctb.2025.11.002_br0190
  article-title: A linear-time algorithm for finding all feedback vertices
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(78)90015-7
– volume: 8
  start-page: 399
  year: 1956
  ident: 10.1016/j.jctb.2025.11.002_br0140
  article-title: Maximal flow through a network
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1956-045-5
– volume: 14
  start-page: 7:1
  issue: 1
  year: 2018
  ident: 10.1016/j.jctb.2025.11.002_br0270
  article-title: Linear time parameterized algorithms for subset feedback vertex set
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3155299
– volume: 45
  start-page: 1377
  issue: 4
  year: 2016
  ident: 10.1016/j.jctb.2025.11.002_br0200
  article-title: Half-integrality, LP-branching, and FPT algorithms
  publication-title: SIAM J. Comput.
  doi: 10.1137/140962838
– start-page: 470
  year: 2012
  ident: 10.1016/j.jctb.2025.11.002_br0170
  article-title: Planar f-deletion: approximation, kernelization and optimal FPT algorithms
– start-page: 226
  year: 1993
  ident: 10.1016/j.jctb.2025.11.002_br0040
  article-title: A linear time algorithm for finding tree-decompositions of small treewidth
– volume: 13
  start-page: 46:1
  issue: 4
  year: 2017
  ident: 10.1016/j.jctb.2025.11.002_br0340
  article-title: Linear-time parameterized algorithms via skew-symmetric multicuts
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3128600
– start-page: 36
  year: 1992
  ident: 10.1016/j.jctb.2025.11.002_br0100
  article-title: Fixed-parameter intractability
– start-page: 639
  year: 2009
  ident: 10.1016/j.jctb.2025.11.002_br0220
  article-title: Planarity allowing few error vertices in linear time
– volume: 55
  issue: 5
  year: 2008
  ident: 10.1016/j.jctb.2025.11.002_br0090
  article-title: A fixed-parameter algorithm for the directed feedback vertex set problem
  publication-title: J. ACM
  doi: 10.1145/1411509.1411511
SSID ssj0003378
Score 2.4138818
Snippet Planarity, bipartiteness and (directed) acyclicity are basic graph properties with classic linear-time recognition algorithms. However, the problems of testing...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 143
SubjectTerms Directed graphs
Feedback vertex set
Fixed-parameter algorithms
Title When recursion is better than iteration: A linear-time algorithm for directed acyclicity with few error vertices
URI https://dx.doi.org/10.1016/j.jctb.2025.11.002
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0095-8956
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003378
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQc4IMpDlEe1B26WLdtre73cIlREK1ohUVBu1nq9S5KmTuQ4ofwW_iyzD9tRC4geuKwiK95kPZ9mvhnPA6E3kQzLMObST8oElpRkPktU7LMsJYmKwoqYbPevH-n5eT6ZsE-j0c-uFma7oHWdX1-z1X8VNVwDYevS2TuIu98ULsBnEDqsIHZY_0nwoF51iYrYmECYHlhempIdTwfJPdtF2SV0jD1NMnnj6wnzHl98WzazdnplUg-trQM6ysUPsZgJzdZN0FbJ755sGviKGeUsXBLibYILhwO3Wzv1pjbFNAEItHIC53x32PPlegoMdbkdKt6Hl09XvN7MbYz2LPgc9PEgvml4ObUh7UtXw-1iF3E2JG91-pilfs5sa_FeH7u5LlajRraLkzPOkZ3vc0vv2xDEPJiLtgSnP04D3Zo1jAcr173Zv2H8-pTELtttXug9Cr0HeEeFaVS6H9OUgcrcH58cT057Q0-IM_TuEK4my6YP3vwnv-c9O1zm4hF66GSExxY8B2gk68fowVnfwXf9BK00jHAPIzxbYwsjrGGEexi9xWO8AyLcgwgDiHAHIjyACGsQYQARNiDCHYieoi_vjy_effDddA5fRFne-rGKKqFL79OYMJ4KRZM0VESTPi5oTEjCSEJKISlXUhGlSAVciKksq-CGTJFnaK9e1vI5wrkAUiwFbCNpoihhwGmliHQtK2VRJQ-R1z27YmWbsBR_ltchSrvHWzgaaU9bAFr-ct-LO_3KS3R_QPQrtNc2G_ka3RPbdrZujhxUfgFlrJbW
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+recursion+is+better+than+iteration%3A+A+linear-time+algorithm+for+directed+acyclicity+with+few+error+vertices&rft.jtitle=Journal+of+combinatorial+theory.+Series+B&rft.au=Lokshtanov%2C+Daniel&rft.au=Ramanujan%2C+M.S.&rft.au=Saurabh%2C+Saket&rft.date=2026-03-01&rft.issn=0095-8956&rft.volume=177&rft.spage=143&rft.epage=185&rft_id=info:doi/10.1016%2Fj.jctb.2025.11.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jctb_2025_11_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-8956&client=summon