Graph variational autoencoder with affinity propagation for community-aware anomaly detection in attributed networks

Anomaly detection in attributed networks (ADAN) aims to identify abnormal nodes that exhibit unexpected link structures and attributes compared to the others. The existing works primarily utilize the node representations learned from the low-level attributes and link structures of nodes to detect ab...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied soft computing Ročník 186; s. 114223
Hlavní autori: Cao, Zhijie, Yang, Chengkun, Fan, Xiaoqing, Li, Lingjie, Lin, Qiuzhen, Li, Jianqiang, Ma, Lijia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2026
Predmet:
ISSN:1568-4946
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Anomaly detection in attributed networks (ADAN) aims to identify abnormal nodes that exhibit unexpected link structures and attributes compared to the others. The existing works primarily utilize the node representations learned from the low-level attributes and link structures of nodes to detect abnormal nodes, which overlook the impact of high-level community structures on ADAN. To address this issue, this paper proposes a novel framework called Graph Variational Autoencoder with Affinity Propagation (GVE-AP) for community-aware ADAN. GVE-AP first employs a graph convolutional variational autoencoder to learn node embeddings from attributed networks. Then, it integrates an affinity propagation algorithm for community division, which jointly considers both node attributes and link structures. Subsequently, it introduces a novel community-aware anomaly score to detect abnormal nodes by measuring dissimilarity with their communities based on robust features extracted via principal component analysis. Experimental results on eight real-world datasets demonstrate that GVE-AP outperforms the state-of-the-art methods for anomaly detection in attributed networks in terms of AUC and robustness. •Proposed a method to learn low-dimensional node representations using link and attribute information.•Developed a mechanism to detect communities based on structural and attribute similarities.•Designed an anomaly score calculation integrating link structure, node attributes, and communities.•The proposed model outperforms other methods in anomaly detection performance.
AbstractList Anomaly detection in attributed networks (ADAN) aims to identify abnormal nodes that exhibit unexpected link structures and attributes compared to the others. The existing works primarily utilize the node representations learned from the low-level attributes and link structures of nodes to detect abnormal nodes, which overlook the impact of high-level community structures on ADAN. To address this issue, this paper proposes a novel framework called Graph Variational Autoencoder with Affinity Propagation (GVE-AP) for community-aware ADAN. GVE-AP first employs a graph convolutional variational autoencoder to learn node embeddings from attributed networks. Then, it integrates an affinity propagation algorithm for community division, which jointly considers both node attributes and link structures. Subsequently, it introduces a novel community-aware anomaly score to detect abnormal nodes by measuring dissimilarity with their communities based on robust features extracted via principal component analysis. Experimental results on eight real-world datasets demonstrate that GVE-AP outperforms the state-of-the-art methods for anomaly detection in attributed networks in terms of AUC and robustness. •Proposed a method to learn low-dimensional node representations using link and attribute information.•Developed a mechanism to detect communities based on structural and attribute similarities.•Designed an anomaly score calculation integrating link structure, node attributes, and communities.•The proposed model outperforms other methods in anomaly detection performance.
ArticleNumber 114223
Author Cao, Zhijie
Yang, Chengkun
Fan, Xiaoqing
Ma, Lijia
Li, Jianqiang
Li, Lingjie
Lin, Qiuzhen
Author_xml – sequence: 1
  givenname: Zhijie
  surname: Cao
  fullname: Cao, Zhijie
  email: caozj2003@gmail.com
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China
– sequence: 2
  givenname: Chengkun
  surname: Yang
  fullname: Yang, Chengkun
  email: yangchengkun234@gmail.com
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China
– sequence: 3
  givenname: Xiaoqing
  surname: Fan
  fullname: Fan, Xiaoqing
  email: 2213875895@qq.com
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China
– sequence: 4
  givenname: Lingjie
  surname: Li
  fullname: Li, Lingjie
  email: lilingjie2017@email.szu.edu.cn
  organization: Guangdong Laboratory of Artificial Intelligence and Digital Economy, Shenzhen, 518060, China
– sequence: 5
  givenname: Qiuzhen
  surname: Lin
  fullname: Lin, Qiuzhen
  email: qiuzhlin@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China
– sequence: 6
  givenname: Jianqiang
  surname: Li
  fullname: Li, Jianqiang
  email: lijq@szu.edu.cn
  organization: National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, 518060, China
– sequence: 7
  givenname: Lijia
  surname: Ma
  fullname: Ma, Lijia
  email: omegamalj@gmail.com
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China
BookMark eNp9kMtOwzAQRb0oEm3hB1j5BxJs5-VIbFAFBakSG1hbE2dMXRo7ctxW_XuSljWrWcw9VzNnQWbOOyTkgbOUM14-7lIYvE4FE0XKeS5ENiNzXpQyyeu8vCWLYdixMVgLOSdxHaDf0iMEC9F6B3sKh-jRad9ioCcbtxSMsc7GM-2D7-H7kqPGB6p91x2mTQInCEjB-Q72Z9piRH1JWUchxmCbQ8SWOownH36GO3JjYD_g_d9ckq_Xl8_VW7L5WL-vnjeJ5qWMidA5QyMLabQpKiOaXEBWlUUJnGnGTFsAb5q6aaSpMWNQsYxhzctGyspkFWRLIq69OvhhCGhUH2wH4aw4U5MrtVOTKzW5UldXI_R0hXC87GgxqEHb0Qe2Noxfqdbb__Bfdhx6YQ
Cites_doi 10.1109/TCSS.2024.3457161
10.1126/science.1136800
10.1016/j.asoc.2024.112369
10.1038/nrg1272
10.1145/3385415
10.1109/TCYB.2022.3159584
10.1073/pnas.122653799
10.1109/TKDE.2021.3118815
10.1109/TNSE.2021.3130321
10.1109/TKDE.2023.3250523
10.1016/j.asoc.2022.108489
10.1109/TSMC.2013.2256890
10.1109/ACCESS.2018.2886457
10.1080/00401706.1969.10490657
10.1109/TCYB.2022.3159661
10.1016/j.knosys.2020.105760
10.1007/s41109-022-00500-z
10.1109/MCI.2023.3245729
10.1109/TCYB.2017.2720180
10.1007/s10618-010-0181-y
10.1109/TNNLS.2021.3068344
10.1016/j.asoc.2024.111414
10.1109/TETCI.2017.2772792
10.1016/0169-7439(87)80084-9
10.1109/TCYB.2020.2989427
10.1145/3299886
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2025.114223
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2025_114223
S1568494625015364
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9DU
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c168t-2c40ef858fcf57f2b42a37656a10c00fd5a1bb9bb8f9e30a7030e916b887f37a3
ISSN 1568-4946
IngestDate Thu Nov 27 00:59:42 EST 2025
Wed Dec 10 14:23:24 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Attributed network
Community detection
Graph variational autoencoder
Anomaly detection
Affinity propagation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c168t-2c40ef858fcf57f2b42a37656a10c00fd5a1bb9bb8f9e30a7030e916b887f37a3
ParticipantIDs crossref_primary_10_1016_j_asoc_2025_114223
elsevier_sciencedirect_doi_10_1016_j_asoc_2025_114223
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tang, Hua, Gao, Zhao, Li (bib0280) 2023
Pan, Liu, Zheng, Pan (bib0250) 2023
Huang, Zhong, Wang, Gong, Ma (bib0195) 2020; 196
Ahmed, Hinkelmann, Corradini (bib0035) 2022
Liu, Li, Pan, Gong, Zhou, Karypis (bib0090) 2021; 33
Fan, Zhang, Li (bib0085) 2020
Wang, Wu, Hu, Wu (bib0130) 2019; 13
Kipf, Welling (bib0215) 2016
Xiao, Xu, Lei, Zhang, Liu, Zhou (bib0105) 2023; 35
Wold, Esbensen, Geladi (bib0220) 1987; 2
Pan, Hu, Long, Jiang, Yao, Zhang (bib0120) 2018
Gao, Yin, Wang, Li, Li (bib0180) 2023; 18
Li, Sha, Huang, Zhang (bib0185) 2018
Jin, Yu, Jiao, Pan, He, Wu, Yu, Zhang (bib0270) 2023; 35
Gao, Liang, Fan, Wang, Sun, Han (bib0050) 2010
Li, Dani, Hu, Liu (bib0055) 2017
Francisquini, Lorena, Nascimento (bib0200) 2022; 118
Shang, Zhang, Zhang, Jiao, Li, Stolkin (bib0175) 2023; 53
Munir, Siddiqui, Dengel, Ahmed (bib0080) 2019; 7
Akoglu, McGlohon, Faloutsos (bib0060) 2010
Peng, Luo, Li, Xue, Zheng (bib0100) 2022; 34
Duan, Wang, Zhang, Zhu, Hu, Jin, Liu, Dong (bib0245) 2023
Wang, Lai, Zhu, Chen, Lv, Qi (bib0255) 2025; 12
Frey, Dueck (bib0225) 2007; 315
Grubbs (bib0020) 1969; 11
Shang, Zhang, Jiao, Zhang, Stolkin (bib0155) 2022; 52
Li, Liu, Wu (bib0145) 2018; 48
Girvan, Newman (bib0135) 2002; 99
Luo, Wu, Beheshti, Yang, Zhang, Wang, Xue (bib0095) 2022
Peng, Luo, Li, Liu, Zheng (bib0240) 2018; vol. 18
Han, Yuan, Trabelsi (bib0265) 2023
Ding, Li, Bhanushali, Liu (bib0065) 2019
Wang, Jin, Cao, Yang, Zhang (bib0165) 2016
Zhu, Wang, Gao, Zhang, Wang, Li (bib0150) 2022; 9
Zhong, Liu, Ao, Hu, Feng, Tang, He (bib0015) 2020
Veličković, Fedus, Hamilton, Liò, Bengio, Hjelm (bib0075) 2018
Sun, He, Huang, Sun, Li, Wang, He, Sun, Jia (bib0190) 2020; 14
Sobolevsky, Belyi (bib0210) 2022; 7
Ma, Wu, Xue, Yang, Zhou, Sheng, Xiong, Akoglu (bib0025) 2023; 35
Wang, Li, Wang, Zhu, Ding (bib0170) 2011; 22
Liu, Yang, Ding, Lu, Lin, Wu, Bi (bib0205) 2024
Li, Huang, Li, Du, Zou (bib0070) 2019
Branco, Abreu, Gomes, Almeida, Ascensão, Bizarro (bib0030) 2020
Wang, Pang, Salehi, Buntine, Leckie (bib0110) 2023
Gao, Zhu, Zhang, Wang, Li (bib0125) 2023; 53
Li, Latecki (bib0230) 2017
Suresh, Jayasakthi Velmurugan, Vidhya, Rahini Sudha (bib0115) 2024
Barabasi, Oltvai (bib0010) 2004; 5
Wang, Zhang, Zhou, Yang, Yu, Yu (bib0005) 2014; 44
Breunig, Kriegel, Ng, Sander (bib0045) 2000
Shone, Ngoc, Phai, Shi (bib0040) 2018; 2
Ding, Li, Agarwal, Liu (bib0275) 2021
Shang, Wang, Zhang, Feng, Jiao, Stolkin (bib0160) 2024; 154
Perozzi, Akoglu (bib0235) 2016
Liu, Yao, Fang, Li, Li, Feng, Ji, Bi (bib0260) 2024
Yang, McAuley, Leskovec (bib0140) 2013
Veličković (10.1016/j.asoc.2025.114223_bib0075)
Fan (10.1016/j.asoc.2025.114223_bib0085) 2020
Wang (10.1016/j.asoc.2025.114223_bib0005) 2014; 44
Gao (10.1016/j.asoc.2025.114223_bib0050) 2010
Branco (10.1016/j.asoc.2025.114223_bib0030) 2020
Pan (10.1016/j.asoc.2025.114223_bib0250) 2023
Grubbs (10.1016/j.asoc.2025.114223_bib0020) 1969; 11
Liu (10.1016/j.asoc.2025.114223_bib0090) 2021; 33
Wang (10.1016/j.asoc.2025.114223_bib0110) 2023
Huang (10.1016/j.asoc.2025.114223_bib0195) 2020; 196
Shone (10.1016/j.asoc.2025.114223_bib0040) 2018; 2
Ding (10.1016/j.asoc.2025.114223_bib0065) 2019
Yang (10.1016/j.asoc.2025.114223_bib0140) 2013
Liu (10.1016/j.asoc.2025.114223_bib0260)
Barabasi (10.1016/j.asoc.2025.114223_bib0010) 2004; 5
Sun (10.1016/j.asoc.2025.114223_bib0190) 2020; 14
Tang (10.1016/j.asoc.2025.114223_bib0280) 2023
Akoglu (10.1016/j.asoc.2025.114223_bib0060) 2010
Sobolevsky (10.1016/j.asoc.2025.114223_bib0210) 2022; 7
Li (10.1016/j.asoc.2025.114223_bib0230) 2017
Ahmed (10.1016/j.asoc.2025.114223_bib0035)
Zhu (10.1016/j.asoc.2025.114223_bib0150) 2022; 9
Luo (10.1016/j.asoc.2025.114223_bib0095) 2022
Gao (10.1016/j.asoc.2025.114223_bib0180) 2023; 18
Suresh (10.1016/j.asoc.2025.114223_bib0115) 2024
Shang (10.1016/j.asoc.2025.114223_bib0155) 2022; 52
Wold (10.1016/j.asoc.2025.114223_bib0220) 1987; 2
Li (10.1016/j.asoc.2025.114223_bib0070) 2019
Munir (10.1016/j.asoc.2025.114223_bib0080) 2019; 7
Peng (10.1016/j.asoc.2025.114223_bib0100) 2022; 34
Zhong (10.1016/j.asoc.2025.114223_bib0015) 2020
Li (10.1016/j.asoc.2025.114223_bib0055) 2017
Han (10.1016/j.asoc.2025.114223_bib0265) 2023
Li (10.1016/j.asoc.2025.114223_bib0145) 2018; 48
Breunig (10.1016/j.asoc.2025.114223_bib0045) 2000
Shang (10.1016/j.asoc.2025.114223_bib0160) 2024; 154
Ma (10.1016/j.asoc.2025.114223_bib0025) 2023; 35
Girvan (10.1016/j.asoc.2025.114223_bib0135) 2002; 99
Jin (10.1016/j.asoc.2025.114223_bib0270) 2023; 35
Wang (10.1016/j.asoc.2025.114223_bib0170) 2011; 22
Xiao (10.1016/j.asoc.2025.114223_bib0105) 2023; 35
Francisquini (10.1016/j.asoc.2025.114223_bib0200) 2022; 118
Wang (10.1016/j.asoc.2025.114223_bib0255) 2025; 12
Liu (10.1016/j.asoc.2025.114223_bib0205) 2024
Gao (10.1016/j.asoc.2025.114223_bib0125) 2023; 53
Shang (10.1016/j.asoc.2025.114223_bib0175) 2023; 53
Duan (10.1016/j.asoc.2025.114223_bib0245) 2023
Wang (10.1016/j.asoc.2025.114223_bib0165) 2016
Perozzi (10.1016/j.asoc.2025.114223_bib0235) 2016
Li (10.1016/j.asoc.2025.114223_bib0185) 2018
Kipf (10.1016/j.asoc.2025.114223_bib0215)
Pan (10.1016/j.asoc.2025.114223_bib0120)
Peng (10.1016/j.asoc.2025.114223_bib0240) 2018; vol. 18
Wang (10.1016/j.asoc.2025.114223_bib0130) 2019; 13
Ding (10.1016/j.asoc.2025.114223_bib0275) 2021
Frey (10.1016/j.asoc.2025.114223_bib0225) 2007; 315
References_xml – volume: 154
  year: 2024
  ident: bib0160
  article-title: Evolutionary multi-objective overlapping community detection based on fusion of internal and external connectivity and correction of node intimacy
  publication-title: Appl. Soft Comput.
– volume: 118
  year: 2022
  ident: bib0200
  article-title: Community-based anomaly detection using spectral graph filtering
  publication-title: Appl. Soft Comput.
– volume: 14
  start-page: 1
  year: 2020
  end-page: 25
  ident: bib0190
  article-title: Network embedding for community detection in attributed networks
  publication-title: ACM Trans. Knowl. Discov. Data
– start-page: 1288
  year: 2021
  end-page: 1294
  ident: bib0275
  article-title: Inductive anomaly detection on attributed networks
  publication-title: Proceedings of the 29th International Joint Conference on Artificial Intelligence
– year: 2022
  ident: bib0035
  article-title: Combining machine learning with knowledge engineering to detect fake news in social networks-a survey
– start-page: 2233
  year: 2019
  end-page: 2236
  ident: bib0070
  article-title: Specae: spectral autoencoder for anomaly detection in attributed networks
  publication-title: Proceedings of the 28th ACM International Conference on Information and Knowledge Management
– volume: 48
  start-page: 1963
  year: 2018
  end-page: 1976
  ident: bib0145
  article-title: A multiobjective evolutionary algorithm based on structural and attribute similarities for community detection in attributed networks
  publication-title: IEEE Trans. Cybern.
– start-page: 785
  year: 2020
  end-page: 795
  ident: bib0015
  article-title: Financial defaulter detection on online credit payment VIA multi-view attributed heterogeneous information network
  publication-title: Proceedings of the Web Conference 2020
– start-page: 657
  year: 2022
  end-page: 665
  ident: bib0095
  article-title: Comga: community-aware attributed graph anomaly detection
  publication-title: Proceedings of the 15th ACM International Conference on Web Search and Data Mining
– start-page: 1253
  year: 2023
  end-page: 1258
  ident: bib0250
  article-title: Prem: a simple yet effective approach for node-level graph anomaly detection
  publication-title: Proceeding of the 2023 IEEE International Conference on Data Mining (ICDM)
– year: 2016
  ident: bib0215
  article-title: Variational graph auto-encoders
– start-page: 1117
  year: 2023
  end-page: 1122
  ident: bib0265
  article-title: Loggpt: log anomaly detection VIA GPT
  publication-title: Proceeding of the 2023 IEEE International Conference on Big Data (BigData)
– volume: 33
  start-page: 2378
  year: 2021
  end-page: 2392
  ident: bib0090
  article-title: Anomaly detection on attributed networks VIA contrastive self-supervised learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 2173
  year: 2017
  end-page: 2179
  ident: bib0230
  article-title: Affinity learning for mixed data clustering
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence
– volume: 44
  start-page: 499
  year: 2014
  end-page: 509
  ident: bib0005
  article-title: Discovering and profiling overlapping communities in location-based social networks
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 2
  start-page: 41
  year: 2018
  end-page: 50
  ident: bib0040
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 35
  start-page: 12012
  year: 2023
  end-page: 12038
  ident: bib0025
  article-title: A comprehensive survey on graph anomaly detection with deep learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 2
  start-page: 37
  year: 1987
  end-page: 52
  ident: bib0220
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
– year: 2018
  ident: bib0075
  article-title: Deep graph infomax
– start-page: 813
  year: 2010
  end-page: 822
  ident: bib0050
  article-title: On community outliers and their efficient detection in information networks
  publication-title: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 410
  year: 2010
  end-page: 421
  ident: bib0060
  article-title: Oddball: spotting anomalies in weighted graphs
  publication-title: Proceeding of the Advances in Knowledge Discovery and Data Mining, 14th Pacific-Asia Conference
– volume: 52
  start-page: 1539
  year: 2022
  end-page: 1552
  ident: bib0155
  article-title: Dynamic immunization node model for complex networks based on community structure and threshold
  publication-title: IEEE Trans. Cybern.
– start-page: 207
  year: 2016
  end-page: 215
  ident: bib0235
  article-title: Scalable anomaly ranking of attributed neighborhoods
  publication-title: Proceedings of the 2016 SIAM International Conference on Data Mining
– year: 2018
  ident: bib0120
  article-title: Adversarially regularized graph autoencoder for graph embedding
– start-page: 338
  year: 2018
  end-page: 345
  ident: bib0185
  article-title: Community detection in attributed graphs: an embedding approach
  publication-title: Proceedings of the 32nd AAAI Conference on Artificial Intelligence
– start-page: 3101
  year: 2020
  end-page: 3109
  ident: bib0030
  article-title: Interleaved sequence RNNS for fraud detection
  publication-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– start-page: 7459
  year: 2023
  end-page: 7467
  ident: bib0245
  article-title: Graph anomaly detection VIA multi-scale contrastive learning networks with augmented view
  publication-title: Proceeding of the 37th AAAI Conference on Artificial Intelligence
– volume: 9
  start-page: 689
  year: 2022
  end-page: 702
  ident: bib0150
  article-title: Community detection in graph: an embedding method
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 22
  start-page: 493
  year: 2011
  end-page: 521
  ident: bib0170
  article-title: Community discovery using nonnegative matrix factorization
  publication-title: Data Min. Knowl. Discov.
– start-page: 265
  year: 2016
  end-page: 271
  ident: bib0165
  article-title: Semantic community identification in large attribute networks
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 53
  start-page: 818
  year: 2023
  end-page: 831
  ident: bib0175
  article-title: Local community detection algorithm based on alternating strategy of strong fusion and weak fusion
  publication-title: IEEE Trans. Cybern.
– start-page: 594
  year: 2019
  end-page: 602
  ident: bib0065
  article-title: Deep anomaly detection on attributed networks
  publication-title: Proceedings of the 2019 SIAM International Conference on Data Mining
– volume: 34
  start-page: 2539
  year: 2022
  end-page: 2552
  ident: bib0100
  article-title: A deep multi-view framework for anomaly detection on attributed networks
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2024
  ident: bib0260
  article-title: Anomalyllm: few-shot anomaly edge detection for dynamic graphs using large language models
– volume: 35
  start-page: 1149
  year: 2023
  end-page: 1170
  ident: bib0270
  article-title: A survey of community detection approaches: from statistical modeling to deep learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: vol. 18
  start-page: 3513
  year: 2018
  end-page: 3519
  ident: bib0240
  article-title: Anomalous: a joint modeling approach for anomaly detection on attributed networks
  publication-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence
– volume: 7
  start-page: 1991
  year: 2019
  end-page: 2005
  ident: bib0080
  article-title: Deepant: a deep learning approach for unsupervised anomaly detection in time series
  publication-title: IEEE Access
– volume: 5
  start-page: 101
  year: 2004
  end-page: 113
  ident: bib0010
  article-title: Network biology: understanding the cell’s functional organization
  publication-title: Nat. Rev. Genet.
– start-page: 93
  year: 2000
  end-page: 104
  ident: bib0045
  article-title: LOF: identifying density-based local outliers
  publication-title: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data
– volume: 53
  start-page: 3599
  year: 2023
  end-page: 3612
  ident: bib0125
  article-title: A novel representation learning for dynamic graphs based on graph convolutional networks
  publication-title: IEEE Trans. Cybern.
– volume: 196
  year: 2020
  ident: bib0195
  article-title: Detecting community in attributed networks by dynamically exploring node attributes and topological structure
  publication-title: Knowl.-Based Syst.
– volume: 11
  start-page: 1
  year: 1969
  end-page: 21
  ident: bib0020
  article-title: Procedures for detecting outlying observations in samples
  publication-title: Technometrics
– volume: 12
  start-page: 485
  year: 2025
  end-page: 497
  ident: bib0255
  article-title: Graph anomaly detection VIA multiscale contrastive self-supervised learning from local to global
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 99
  start-page: 7821
  year: 2002
  end-page: 7826
  ident: bib0135
  article-title: Community structure in social and biological networks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: bib0225
  article-title: Clustering by passing messages between data points
  publication-title: Science
– start-page: 2152
  year: 2017
  end-page: 2158
  ident: bib0055
  article-title: Radar: residual analysis for anomaly detection in attributed networks
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence
– year: 2024
  ident: bib0115
  article-title: Deep anomaly detection: a linear one-class SVM approach for high-dimensional and large-scale data
  publication-title: Appl. Soft Comput.
– start-page: 5685
  year: 2020
  end-page: 5689
  ident: bib0085
  article-title: Anomalydae: dual autoencoder for anomaly detection on attributed networks
  publication-title: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 5454
  year: 2024
  end-page: 5465
  ident: bib0205
  article-title: DAG: deep adaptive and generative k-free community detection on attributed graphs
  publication-title: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
– volume: 13
  start-page: 1
  year: 2019
  end-page: 24
  ident: bib0130
  article-title: Detecting and assessing anomalous evolutionary behaviors of nodes in evolving social networks
  publication-title: ACM Trans. Knowl. Discov. Data
– start-page: 1151
  year: 2013
  end-page: 1156
  ident: bib0140
  article-title: Community detection in networks with node attributes
  publication-title: Proceeding of the 2013 IEEE 13th International Conference on Data Mining
– start-page: 4676
  year: 2023
  end-page: 4684
  ident: bib0110
  article-title: Cross-domain graph anomaly detection VIA anomaly-aware contrastive alignment
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 29628
  year: 2023
  end-page: 29653
  ident: bib0280
  article-title: Gadbench: revisiting and benchmarking supervised graph anomaly detection
  publication-title: Proceeding of the Advances in Neural Information Processing Systems
– volume: 7
  start-page: 63
  year: 2022
  ident: bib0210
  article-title: Graph neural network inspired algorithm for unsupervised network community detection
  publication-title: Appl. Netw. Sci.
– volume: 35
  start-page: 10540
  year: 2023
  end-page: 10553
  ident: bib0105
  article-title: Counterfactual graph learning for anomaly detection on attributed networks
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 18
  start-page: 46
  year: 2023
  end-page: 59
  ident: bib0180
  article-title: Multilayer network community detection: a novel multi-objective evolutionary algorithm based on consensus prior information
  publication-title: IEEE Comput. Intell. Mag.
– start-page: 594
  year: 2019
  ident: 10.1016/j.asoc.2025.114223_bib0065
  article-title: Deep anomaly detection on attributed networks
– volume: 12
  start-page: 485
  issue: 2
  year: 2025
  ident: 10.1016/j.asoc.2025.114223_bib0255
  article-title: Graph anomaly detection VIA multiscale contrastive self-supervised learning from local to global
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2024.3457161
– start-page: 813
  year: 2010
  ident: 10.1016/j.asoc.2025.114223_bib0050
  article-title: On community outliers and their efficient detection in information networks
– ident: 10.1016/j.asoc.2025.114223_bib0035
– volume: 315
  start-page: 972
  issue: 5814
  year: 2007
  ident: 10.1016/j.asoc.2025.114223_bib0225
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– year: 2024
  ident: 10.1016/j.asoc.2025.114223_bib0115
  article-title: Deep anomaly detection: a linear one-class SVM approach for high-dimensional and large-scale data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112369
– volume: 5
  start-page: 101
  issue: 2
  year: 2004
  ident: 10.1016/j.asoc.2025.114223_bib0010
  article-title: Network biology: understanding the cell’s functional organization
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1272
– start-page: 93
  year: 2000
  ident: 10.1016/j.asoc.2025.114223_bib0045
  article-title: LOF: identifying density-based local outliers
– start-page: 785
  year: 2020
  ident: 10.1016/j.asoc.2025.114223_bib0015
  article-title: Financial defaulter detection on online credit payment VIA multi-view attributed heterogeneous information network
– volume: 14
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2025.114223_bib0190
  article-title: Network embedding for community detection in attributed networks
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3385415
– start-page: 29628
  year: 2023
  ident: 10.1016/j.asoc.2025.114223_bib0280
  article-title: Gadbench: revisiting and benchmarking supervised graph anomaly detection
– start-page: 7459
  year: 2023
  ident: 10.1016/j.asoc.2025.114223_bib0245
  article-title: Graph anomaly detection VIA multi-scale contrastive learning networks with augmented view
– start-page: 265
  year: 2016
  ident: 10.1016/j.asoc.2025.114223_bib0165
  article-title: Semantic community identification in large attribute networks
– start-page: 1117
  year: 2023
  ident: 10.1016/j.asoc.2025.114223_bib0265
  article-title: Loggpt: log anomaly detection VIA GPT
– volume: 53
  start-page: 818
  issue: 2
  year: 2023
  ident: 10.1016/j.asoc.2025.114223_bib0175
  article-title: Local community detection algorithm based on alternating strategy of strong fusion and weak fusion
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2022.3159584
– volume: 99
  start-page: 7821
  issue: 12
  year: 2002
  ident: 10.1016/j.asoc.2025.114223_bib0135
  article-title: Community structure in social and biological networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.122653799
– volume: 35
  start-page: 12012
  issue: 12
  year: 2023
  ident: 10.1016/j.asoc.2025.114223_bib0025
  article-title: A comprehensive survey on graph anomaly detection with deep learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3118815
– ident: 10.1016/j.asoc.2025.114223_bib0120
– volume: 9
  start-page: 689
  issue: 2
  year: 2022
  ident: 10.1016/j.asoc.2025.114223_bib0150
  article-title: Community detection in graph: an embedding method
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2021.3130321
– volume: 35
  start-page: 10540
  issue: 10
  year: 2023
  ident: 10.1016/j.asoc.2025.114223_bib0105
  article-title: Counterfactual graph learning for anomaly detection on attributed networks
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2023.3250523
– start-page: 1151
  year: 2013
  ident: 10.1016/j.asoc.2025.114223_bib0140
  article-title: Community detection in networks with node attributes
– volume: 118
  year: 2022
  ident: 10.1016/j.asoc.2025.114223_bib0200
  article-title: Community-based anomaly detection using spectral graph filtering
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108489
– start-page: 4676
  year: 2023
  ident: 10.1016/j.asoc.2025.114223_bib0110
  article-title: Cross-domain graph anomaly detection VIA anomaly-aware contrastive alignment
– volume: 44
  start-page: 499
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2025.114223_bib0005
  article-title: Discovering and profiling overlapping communities in location-based social networks
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2013.2256890
– start-page: 410
  year: 2010
  ident: 10.1016/j.asoc.2025.114223_bib0060
  article-title: Oddball: spotting anomalies in weighted graphs
– ident: 10.1016/j.asoc.2025.114223_bib0075
– start-page: 5454
  year: 2024
  ident: 10.1016/j.asoc.2025.114223_bib0205
  article-title: DAG: deep adaptive and generative k-free community detection on attributed graphs
– volume: 7
  start-page: 1991
  year: 2019
  ident: 10.1016/j.asoc.2025.114223_bib0080
  article-title: Deepant: a deep learning approach for unsupervised anomaly detection in time series
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886457
– ident: 10.1016/j.asoc.2025.114223_bib0260
– volume: 11
  start-page: 1
  issue: 1
  year: 1969
  ident: 10.1016/j.asoc.2025.114223_bib0020
  article-title: Procedures for detecting outlying observations in samples
  publication-title: Technometrics
  doi: 10.1080/00401706.1969.10490657
– start-page: 207
  year: 2016
  ident: 10.1016/j.asoc.2025.114223_bib0235
  article-title: Scalable anomaly ranking of attributed neighborhoods
– volume: 53
  start-page: 3599
  issue: 6
  year: 2023
  ident: 10.1016/j.asoc.2025.114223_bib0125
  article-title: A novel representation learning for dynamic graphs based on graph convolutional networks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2022.3159661
– start-page: 1253
  year: 2023
  ident: 10.1016/j.asoc.2025.114223_bib0250
  article-title: Prem: a simple yet effective approach for node-level graph anomaly detection
– volume: 196
  year: 2020
  ident: 10.1016/j.asoc.2025.114223_bib0195
  article-title: Detecting community in attributed networks by dynamically exploring node attributes and topological structure
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105760
– volume: 7
  start-page: 63
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2025.114223_bib0210
  article-title: Graph neural network inspired algorithm for unsupervised network community detection
  publication-title: Appl. Netw. Sci.
  doi: 10.1007/s41109-022-00500-z
– volume: 18
  start-page: 46
  issue: 2
  year: 2023
  ident: 10.1016/j.asoc.2025.114223_bib0180
  article-title: Multilayer network community detection: a novel multi-objective evolutionary algorithm based on consensus prior information
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2023.3245729
– start-page: 2233
  year: 2019
  ident: 10.1016/j.asoc.2025.114223_bib0070
  article-title: Specae: spectral autoencoder for anomaly detection in attributed networks
– volume: 48
  start-page: 1963
  issue: 7
  year: 2018
  ident: 10.1016/j.asoc.2025.114223_bib0145
  article-title: A multiobjective evolutionary algorithm based on structural and attribute similarities for community detection in attributed networks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2720180
– volume: 22
  start-page: 493
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2025.114223_bib0170
  article-title: Community discovery using nonnegative matrix factorization
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-010-0181-y
– volume: 33
  start-page: 2378
  issue: 6
  year: 2021
  ident: 10.1016/j.asoc.2025.114223_bib0090
  article-title: Anomaly detection on attributed networks VIA contrastive self-supervised learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3068344
– start-page: 5685
  year: 2020
  ident: 10.1016/j.asoc.2025.114223_bib0085
  article-title: Anomalydae: dual autoencoder for anomaly detection on attributed networks
– start-page: 657
  year: 2022
  ident: 10.1016/j.asoc.2025.114223_bib0095
  article-title: Comga: community-aware attributed graph anomaly detection
– start-page: 2173
  year: 2017
  ident: 10.1016/j.asoc.2025.114223_bib0230
  article-title: Affinity learning for mixed data clustering
– volume: 35
  start-page: 1149
  issue: 2
  year: 2023
  ident: 10.1016/j.asoc.2025.114223_bib0270
  article-title: A survey of community detection approaches: from statistical modeling to deep learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 154
  year: 2024
  ident: 10.1016/j.asoc.2025.114223_bib0160
  article-title: Evolutionary multi-objective overlapping community detection based on fusion of internal and external connectivity and correction of node intimacy
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111414
– volume: vol. 18
  start-page: 3513
  year: 2018
  ident: 10.1016/j.asoc.2025.114223_bib0240
  article-title: Anomalous: a joint modeling approach for anomaly detection on attributed networks
– start-page: 338
  year: 2018
  ident: 10.1016/j.asoc.2025.114223_bib0185
  article-title: Community detection in attributed graphs: an embedding approach
– volume: 34
  start-page: 2539
  issue: 6
  year: 2022
  ident: 10.1016/j.asoc.2025.114223_bib0100
  article-title: A deep multi-view framework for anomaly detection on attributed networks
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 2
  start-page: 41
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2025.114223_bib0040
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2017.2772792
– start-page: 2152
  year: 2017
  ident: 10.1016/j.asoc.2025.114223_bib0055
  article-title: Radar: residual analysis for anomaly detection in attributed networks
– volume: 2
  start-page: 37
  issue: 1
  year: 1987
  ident: 10.1016/j.asoc.2025.114223_bib0220
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(87)80084-9
– start-page: 3101
  year: 2020
  ident: 10.1016/j.asoc.2025.114223_bib0030
  article-title: Interleaved sequence RNNS for fraud detection
– volume: 52
  start-page: 1539
  issue: 3
  year: 2022
  ident: 10.1016/j.asoc.2025.114223_bib0155
  article-title: Dynamic immunization node model for complex networks based on community structure and threshold
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2989427
– start-page: 1288
  year: 2021
  ident: 10.1016/j.asoc.2025.114223_bib0275
  article-title: Inductive anomaly detection on attributed networks
– volume: 13
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2025.114223_bib0130
  article-title: Detecting and assessing anomalous evolutionary behaviors of nodes in evolving social networks
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3299886
– ident: 10.1016/j.asoc.2025.114223_bib0215
SSID ssj0016928
Score 2.4569876
Snippet Anomaly detection in attributed networks (ADAN) aims to identify abnormal nodes that exhibit unexpected link structures and attributes compared to the others....
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 114223
SubjectTerms Affinity propagation
Anomaly detection
Attributed network
Community detection
Graph variational autoencoder
Title Graph variational autoencoder with affinity propagation for community-aware anomaly detection in attributed networks
URI https://dx.doi.org/10.1016/j.asoc.2025.114223
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3db9MwEMCt0vHAC9-IwZj8wFuVKXHjxH6cpo0PTRMPAxVeIjuxt5SRjtUt29_AP71zbKdZNRB74CWqovYa5X66O5_vzgi91VkeE6VFlBBFojRLZMRlXEUJBMuCCl7xdhLTl8P86IhNJvzTYPA79MIsz_KmYZeX_Py_qhrugbJt6-wd1N0JhRvwGZQOV1A7XP9J8e_sCOrREtbAIc8nFmZm51XasRGul03rurHhN5hPMCiresPStYuYq0j8Eu3OwuyHOLsaVcqoMpRFCuNOybKFA66IfN4PcUNcOwcD31asL0xwj-1eR5ub_XZaT-uOqa8-ab13qpqT74uO1wOXnZ3UYvazJ-Ow9tmEkyDDpy1IP23hLW3GopT7_GNnivvGtG3zHd9q513KYbojAGFY5BO6s_ryzaHaa86uK0EM1W3TwsoorIzCybiHNkhOORuijd0P-5OP3aZUxtujersn9z1Yrlxw_Uluj3N6scvxY_TQLzrwroPlCRqo5il6FA70wN6-P0OmZQf32ME9drBlBwd2cI8dDOzgNXawZwd37OC6wSt2cGDnOfp8sH-89z7yx3JEZZIxE5EyjZVmlOlS01wTmRIBbopmIonLONYVFYmUXEqmuRrHwvoUBasQCf5Mj3MxfoGGzaxRLxHmMhGpyBiN0wqipJhVnIg8kSWhEqxIvolG4SUW5276SvFnxW0iGt5z4eNHFxcWgM1ffvfqTv_yGj1Y8byFhuZiod6g--XS1POLbc_MNf6Pl2o
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+variational+autoencoder+with+affinity+propagation+for+community-aware+anomaly+detection+in+attributed+networks&rft.jtitle=Applied+soft+computing&rft.au=Cao%2C+Zhijie&rft.au=Yang%2C+Chengkun&rft.au=Fan%2C+Xiaoqing&rft.au=Li%2C+Lingjie&rft.date=2026-01-01&rft.issn=1568-4946&rft.volume=186&rft.spage=114223&rft_id=info:doi/10.1016%2Fj.asoc.2025.114223&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2025_114223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon