Graph variational autoencoder with affinity propagation for community-aware anomaly detection in attributed networks
Anomaly detection in attributed networks (ADAN) aims to identify abnormal nodes that exhibit unexpected link structures and attributes compared to the others. The existing works primarily utilize the node representations learned from the low-level attributes and link structures of nodes to detect ab...
Uložené v:
| Vydané v: | Applied soft computing Ročník 186; s. 114223 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.01.2026
|
| Predmet: | |
| ISSN: | 1568-4946 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Anomaly detection in attributed networks (ADAN) aims to identify abnormal nodes that exhibit unexpected link structures and attributes compared to the others. The existing works primarily utilize the node representations learned from the low-level attributes and link structures of nodes to detect abnormal nodes, which overlook the impact of high-level community structures on ADAN. To address this issue, this paper proposes a novel framework called Graph Variational Autoencoder with Affinity Propagation (GVE-AP) for community-aware ADAN. GVE-AP first employs a graph convolutional variational autoencoder to learn node embeddings from attributed networks. Then, it integrates an affinity propagation algorithm for community division, which jointly considers both node attributes and link structures. Subsequently, it introduces a novel community-aware anomaly score to detect abnormal nodes by measuring dissimilarity with their communities based on robust features extracted via principal component analysis. Experimental results on eight real-world datasets demonstrate that GVE-AP outperforms the state-of-the-art methods for anomaly detection in attributed networks in terms of AUC and robustness.
•Proposed a method to learn low-dimensional node representations using link and attribute information.•Developed a mechanism to detect communities based on structural and attribute similarities.•Designed an anomaly score calculation integrating link structure, node attributes, and communities.•The proposed model outperforms other methods in anomaly detection performance. |
|---|---|
| AbstractList | Anomaly detection in attributed networks (ADAN) aims to identify abnormal nodes that exhibit unexpected link structures and attributes compared to the others. The existing works primarily utilize the node representations learned from the low-level attributes and link structures of nodes to detect abnormal nodes, which overlook the impact of high-level community structures on ADAN. To address this issue, this paper proposes a novel framework called Graph Variational Autoencoder with Affinity Propagation (GVE-AP) for community-aware ADAN. GVE-AP first employs a graph convolutional variational autoencoder to learn node embeddings from attributed networks. Then, it integrates an affinity propagation algorithm for community division, which jointly considers both node attributes and link structures. Subsequently, it introduces a novel community-aware anomaly score to detect abnormal nodes by measuring dissimilarity with their communities based on robust features extracted via principal component analysis. Experimental results on eight real-world datasets demonstrate that GVE-AP outperforms the state-of-the-art methods for anomaly detection in attributed networks in terms of AUC and robustness.
•Proposed a method to learn low-dimensional node representations using link and attribute information.•Developed a mechanism to detect communities based on structural and attribute similarities.•Designed an anomaly score calculation integrating link structure, node attributes, and communities.•The proposed model outperforms other methods in anomaly detection performance. |
| ArticleNumber | 114223 |
| Author | Cao, Zhijie Yang, Chengkun Fan, Xiaoqing Ma, Lijia Li, Jianqiang Li, Lingjie Lin, Qiuzhen |
| Author_xml | – sequence: 1 givenname: Zhijie surname: Cao fullname: Cao, Zhijie email: caozj2003@gmail.com organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China – sequence: 2 givenname: Chengkun surname: Yang fullname: Yang, Chengkun email: yangchengkun234@gmail.com organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China – sequence: 3 givenname: Xiaoqing surname: Fan fullname: Fan, Xiaoqing email: 2213875895@qq.com organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China – sequence: 4 givenname: Lingjie surname: Li fullname: Li, Lingjie email: lilingjie2017@email.szu.edu.cn organization: Guangdong Laboratory of Artificial Intelligence and Digital Economy, Shenzhen, 518060, China – sequence: 5 givenname: Qiuzhen surname: Lin fullname: Lin, Qiuzhen email: qiuzhlin@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China – sequence: 6 givenname: Jianqiang surname: Li fullname: Li, Jianqiang email: lijq@szu.edu.cn organization: National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, 518060, China – sequence: 7 givenname: Lijia surname: Ma fullname: Ma, Lijia email: omegamalj@gmail.com organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China |
| BookMark | eNp9kMtOwzAQRb0oEm3hB1j5BxJs5-VIbFAFBakSG1hbE2dMXRo7ctxW_XuSljWrWcw9VzNnQWbOOyTkgbOUM14-7lIYvE4FE0XKeS5ENiNzXpQyyeu8vCWLYdixMVgLOSdxHaDf0iMEC9F6B3sKh-jRad9ioCcbtxSMsc7GM-2D7-H7kqPGB6p91x2mTQInCEjB-Q72Z9piRH1JWUchxmCbQ8SWOownH36GO3JjYD_g_d9ckq_Xl8_VW7L5WL-vnjeJ5qWMidA5QyMLabQpKiOaXEBWlUUJnGnGTFsAb5q6aaSpMWNQsYxhzctGyspkFWRLIq69OvhhCGhUH2wH4aw4U5MrtVOTKzW5UldXI_R0hXC87GgxqEHb0Qe2Noxfqdbb__Bfdhx6YQ |
| Cites_doi | 10.1109/TCSS.2024.3457161 10.1126/science.1136800 10.1016/j.asoc.2024.112369 10.1038/nrg1272 10.1145/3385415 10.1109/TCYB.2022.3159584 10.1073/pnas.122653799 10.1109/TKDE.2021.3118815 10.1109/TNSE.2021.3130321 10.1109/TKDE.2023.3250523 10.1016/j.asoc.2022.108489 10.1109/TSMC.2013.2256890 10.1109/ACCESS.2018.2886457 10.1080/00401706.1969.10490657 10.1109/TCYB.2022.3159661 10.1016/j.knosys.2020.105760 10.1007/s41109-022-00500-z 10.1109/MCI.2023.3245729 10.1109/TCYB.2017.2720180 10.1007/s10618-010-0181-y 10.1109/TNNLS.2021.3068344 10.1016/j.asoc.2024.111414 10.1109/TETCI.2017.2772792 10.1016/0169-7439(87)80084-9 10.1109/TCYB.2020.2989427 10.1145/3299886 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2025.114223 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_asoc_2025_114223 S1568494625015364 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9DU AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c168t-2c40ef858fcf57f2b42a37656a10c00fd5a1bb9bb8f9e30a7030e916b887f37a3 |
| ISSN | 1568-4946 |
| IngestDate | Thu Nov 27 00:59:42 EST 2025 Wed Dec 10 14:23:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Attributed network Community detection Graph variational autoencoder Anomaly detection Affinity propagation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c168t-2c40ef858fcf57f2b42a37656a10c00fd5a1bb9bb8f9e30a7030e916b887f37a3 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2025_114223 elsevier_sciencedirect_doi_10_1016_j_asoc_2025_114223 |
| PublicationCentury | 2000 |
| PublicationDate | January 2026 2026-01-00 |
| PublicationDateYYYYMMDD | 2026-01-01 |
| PublicationDate_xml | – month: 01 year: 2026 text: January 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Tang, Hua, Gao, Zhao, Li (bib0280) 2023 Pan, Liu, Zheng, Pan (bib0250) 2023 Huang, Zhong, Wang, Gong, Ma (bib0195) 2020; 196 Ahmed, Hinkelmann, Corradini (bib0035) 2022 Liu, Li, Pan, Gong, Zhou, Karypis (bib0090) 2021; 33 Fan, Zhang, Li (bib0085) 2020 Wang, Wu, Hu, Wu (bib0130) 2019; 13 Kipf, Welling (bib0215) 2016 Xiao, Xu, Lei, Zhang, Liu, Zhou (bib0105) 2023; 35 Wold, Esbensen, Geladi (bib0220) 1987; 2 Pan, Hu, Long, Jiang, Yao, Zhang (bib0120) 2018 Gao, Yin, Wang, Li, Li (bib0180) 2023; 18 Li, Sha, Huang, Zhang (bib0185) 2018 Jin, Yu, Jiao, Pan, He, Wu, Yu, Zhang (bib0270) 2023; 35 Gao, Liang, Fan, Wang, Sun, Han (bib0050) 2010 Li, Dani, Hu, Liu (bib0055) 2017 Francisquini, Lorena, Nascimento (bib0200) 2022; 118 Shang, Zhang, Zhang, Jiao, Li, Stolkin (bib0175) 2023; 53 Munir, Siddiqui, Dengel, Ahmed (bib0080) 2019; 7 Akoglu, McGlohon, Faloutsos (bib0060) 2010 Peng, Luo, Li, Xue, Zheng (bib0100) 2022; 34 Duan, Wang, Zhang, Zhu, Hu, Jin, Liu, Dong (bib0245) 2023 Wang, Lai, Zhu, Chen, Lv, Qi (bib0255) 2025; 12 Frey, Dueck (bib0225) 2007; 315 Grubbs (bib0020) 1969; 11 Shang, Zhang, Jiao, Zhang, Stolkin (bib0155) 2022; 52 Li, Liu, Wu (bib0145) 2018; 48 Girvan, Newman (bib0135) 2002; 99 Luo, Wu, Beheshti, Yang, Zhang, Wang, Xue (bib0095) 2022 Peng, Luo, Li, Liu, Zheng (bib0240) 2018; vol. 18 Han, Yuan, Trabelsi (bib0265) 2023 Ding, Li, Bhanushali, Liu (bib0065) 2019 Wang, Jin, Cao, Yang, Zhang (bib0165) 2016 Zhu, Wang, Gao, Zhang, Wang, Li (bib0150) 2022; 9 Zhong, Liu, Ao, Hu, Feng, Tang, He (bib0015) 2020 Veličković, Fedus, Hamilton, Liò, Bengio, Hjelm (bib0075) 2018 Sun, He, Huang, Sun, Li, Wang, He, Sun, Jia (bib0190) 2020; 14 Sobolevsky, Belyi (bib0210) 2022; 7 Ma, Wu, Xue, Yang, Zhou, Sheng, Xiong, Akoglu (bib0025) 2023; 35 Wang, Li, Wang, Zhu, Ding (bib0170) 2011; 22 Liu, Yang, Ding, Lu, Lin, Wu, Bi (bib0205) 2024 Li, Huang, Li, Du, Zou (bib0070) 2019 Branco, Abreu, Gomes, Almeida, Ascensão, Bizarro (bib0030) 2020 Wang, Pang, Salehi, Buntine, Leckie (bib0110) 2023 Gao, Zhu, Zhang, Wang, Li (bib0125) 2023; 53 Li, Latecki (bib0230) 2017 Suresh, Jayasakthi Velmurugan, Vidhya, Rahini Sudha (bib0115) 2024 Barabasi, Oltvai (bib0010) 2004; 5 Wang, Zhang, Zhou, Yang, Yu, Yu (bib0005) 2014; 44 Breunig, Kriegel, Ng, Sander (bib0045) 2000 Shone, Ngoc, Phai, Shi (bib0040) 2018; 2 Ding, Li, Agarwal, Liu (bib0275) 2021 Shang, Wang, Zhang, Feng, Jiao, Stolkin (bib0160) 2024; 154 Perozzi, Akoglu (bib0235) 2016 Liu, Yao, Fang, Li, Li, Feng, Ji, Bi (bib0260) 2024 Yang, McAuley, Leskovec (bib0140) 2013 Veličković (10.1016/j.asoc.2025.114223_bib0075) Fan (10.1016/j.asoc.2025.114223_bib0085) 2020 Wang (10.1016/j.asoc.2025.114223_bib0005) 2014; 44 Gao (10.1016/j.asoc.2025.114223_bib0050) 2010 Branco (10.1016/j.asoc.2025.114223_bib0030) 2020 Pan (10.1016/j.asoc.2025.114223_bib0250) 2023 Grubbs (10.1016/j.asoc.2025.114223_bib0020) 1969; 11 Liu (10.1016/j.asoc.2025.114223_bib0090) 2021; 33 Wang (10.1016/j.asoc.2025.114223_bib0110) 2023 Huang (10.1016/j.asoc.2025.114223_bib0195) 2020; 196 Shone (10.1016/j.asoc.2025.114223_bib0040) 2018; 2 Ding (10.1016/j.asoc.2025.114223_bib0065) 2019 Yang (10.1016/j.asoc.2025.114223_bib0140) 2013 Liu (10.1016/j.asoc.2025.114223_bib0260) Barabasi (10.1016/j.asoc.2025.114223_bib0010) 2004; 5 Sun (10.1016/j.asoc.2025.114223_bib0190) 2020; 14 Tang (10.1016/j.asoc.2025.114223_bib0280) 2023 Akoglu (10.1016/j.asoc.2025.114223_bib0060) 2010 Sobolevsky (10.1016/j.asoc.2025.114223_bib0210) 2022; 7 Li (10.1016/j.asoc.2025.114223_bib0230) 2017 Ahmed (10.1016/j.asoc.2025.114223_bib0035) Zhu (10.1016/j.asoc.2025.114223_bib0150) 2022; 9 Luo (10.1016/j.asoc.2025.114223_bib0095) 2022 Gao (10.1016/j.asoc.2025.114223_bib0180) 2023; 18 Suresh (10.1016/j.asoc.2025.114223_bib0115) 2024 Shang (10.1016/j.asoc.2025.114223_bib0155) 2022; 52 Wold (10.1016/j.asoc.2025.114223_bib0220) 1987; 2 Li (10.1016/j.asoc.2025.114223_bib0070) 2019 Munir (10.1016/j.asoc.2025.114223_bib0080) 2019; 7 Peng (10.1016/j.asoc.2025.114223_bib0100) 2022; 34 Zhong (10.1016/j.asoc.2025.114223_bib0015) 2020 Li (10.1016/j.asoc.2025.114223_bib0055) 2017 Han (10.1016/j.asoc.2025.114223_bib0265) 2023 Li (10.1016/j.asoc.2025.114223_bib0145) 2018; 48 Breunig (10.1016/j.asoc.2025.114223_bib0045) 2000 Shang (10.1016/j.asoc.2025.114223_bib0160) 2024; 154 Ma (10.1016/j.asoc.2025.114223_bib0025) 2023; 35 Girvan (10.1016/j.asoc.2025.114223_bib0135) 2002; 99 Jin (10.1016/j.asoc.2025.114223_bib0270) 2023; 35 Wang (10.1016/j.asoc.2025.114223_bib0170) 2011; 22 Xiao (10.1016/j.asoc.2025.114223_bib0105) 2023; 35 Francisquini (10.1016/j.asoc.2025.114223_bib0200) 2022; 118 Wang (10.1016/j.asoc.2025.114223_bib0255) 2025; 12 Liu (10.1016/j.asoc.2025.114223_bib0205) 2024 Gao (10.1016/j.asoc.2025.114223_bib0125) 2023; 53 Shang (10.1016/j.asoc.2025.114223_bib0175) 2023; 53 Duan (10.1016/j.asoc.2025.114223_bib0245) 2023 Wang (10.1016/j.asoc.2025.114223_bib0165) 2016 Perozzi (10.1016/j.asoc.2025.114223_bib0235) 2016 Li (10.1016/j.asoc.2025.114223_bib0185) 2018 Kipf (10.1016/j.asoc.2025.114223_bib0215) Pan (10.1016/j.asoc.2025.114223_bib0120) Peng (10.1016/j.asoc.2025.114223_bib0240) 2018; vol. 18 Wang (10.1016/j.asoc.2025.114223_bib0130) 2019; 13 Ding (10.1016/j.asoc.2025.114223_bib0275) 2021 Frey (10.1016/j.asoc.2025.114223_bib0225) 2007; 315 |
| References_xml | – volume: 154 year: 2024 ident: bib0160 article-title: Evolutionary multi-objective overlapping community detection based on fusion of internal and external connectivity and correction of node intimacy publication-title: Appl. Soft Comput. – volume: 118 year: 2022 ident: bib0200 article-title: Community-based anomaly detection using spectral graph filtering publication-title: Appl. Soft Comput. – volume: 14 start-page: 1 year: 2020 end-page: 25 ident: bib0190 article-title: Network embedding for community detection in attributed networks publication-title: ACM Trans. Knowl. Discov. Data – start-page: 1288 year: 2021 end-page: 1294 ident: bib0275 article-title: Inductive anomaly detection on attributed networks publication-title: Proceedings of the 29th International Joint Conference on Artificial Intelligence – year: 2022 ident: bib0035 article-title: Combining machine learning with knowledge engineering to detect fake news in social networks-a survey – start-page: 2233 year: 2019 end-page: 2236 ident: bib0070 article-title: Specae: spectral autoencoder for anomaly detection in attributed networks publication-title: Proceedings of the 28th ACM International Conference on Information and Knowledge Management – volume: 48 start-page: 1963 year: 2018 end-page: 1976 ident: bib0145 article-title: A multiobjective evolutionary algorithm based on structural and attribute similarities for community detection in attributed networks publication-title: IEEE Trans. Cybern. – start-page: 785 year: 2020 end-page: 795 ident: bib0015 article-title: Financial defaulter detection on online credit payment VIA multi-view attributed heterogeneous information network publication-title: Proceedings of the Web Conference 2020 – start-page: 657 year: 2022 end-page: 665 ident: bib0095 article-title: Comga: community-aware attributed graph anomaly detection publication-title: Proceedings of the 15th ACM International Conference on Web Search and Data Mining – start-page: 1253 year: 2023 end-page: 1258 ident: bib0250 article-title: Prem: a simple yet effective approach for node-level graph anomaly detection publication-title: Proceeding of the 2023 IEEE International Conference on Data Mining (ICDM) – year: 2016 ident: bib0215 article-title: Variational graph auto-encoders – start-page: 1117 year: 2023 end-page: 1122 ident: bib0265 article-title: Loggpt: log anomaly detection VIA GPT publication-title: Proceeding of the 2023 IEEE International Conference on Big Data (BigData) – volume: 33 start-page: 2378 year: 2021 end-page: 2392 ident: bib0090 article-title: Anomaly detection on attributed networks VIA contrastive self-supervised learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 2173 year: 2017 end-page: 2179 ident: bib0230 article-title: Affinity learning for mixed data clustering publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence – volume: 44 start-page: 499 year: 2014 end-page: 509 ident: bib0005 article-title: Discovering and profiling overlapping communities in location-based social networks publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 2 start-page: 41 year: 2018 end-page: 50 ident: bib0040 article-title: A deep learning approach to network intrusion detection publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – volume: 35 start-page: 12012 year: 2023 end-page: 12038 ident: bib0025 article-title: A comprehensive survey on graph anomaly detection with deep learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 2 start-page: 37 year: 1987 end-page: 52 ident: bib0220 article-title: Principal component analysis publication-title: Chemom. Intell. Lab. Syst. – year: 2018 ident: bib0075 article-title: Deep graph infomax – start-page: 813 year: 2010 end-page: 822 ident: bib0050 article-title: On community outliers and their efficient detection in information networks publication-title: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 410 year: 2010 end-page: 421 ident: bib0060 article-title: Oddball: spotting anomalies in weighted graphs publication-title: Proceeding of the Advances in Knowledge Discovery and Data Mining, 14th Pacific-Asia Conference – volume: 52 start-page: 1539 year: 2022 end-page: 1552 ident: bib0155 article-title: Dynamic immunization node model for complex networks based on community structure and threshold publication-title: IEEE Trans. Cybern. – start-page: 207 year: 2016 end-page: 215 ident: bib0235 article-title: Scalable anomaly ranking of attributed neighborhoods publication-title: Proceedings of the 2016 SIAM International Conference on Data Mining – year: 2018 ident: bib0120 article-title: Adversarially regularized graph autoencoder for graph embedding – start-page: 338 year: 2018 end-page: 345 ident: bib0185 article-title: Community detection in attributed graphs: an embedding approach publication-title: Proceedings of the 32nd AAAI Conference on Artificial Intelligence – start-page: 3101 year: 2020 end-page: 3109 ident: bib0030 article-title: Interleaved sequence RNNS for fraud detection publication-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – start-page: 7459 year: 2023 end-page: 7467 ident: bib0245 article-title: Graph anomaly detection VIA multi-scale contrastive learning networks with augmented view publication-title: Proceeding of the 37th AAAI Conference on Artificial Intelligence – volume: 9 start-page: 689 year: 2022 end-page: 702 ident: bib0150 article-title: Community detection in graph: an embedding method publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 22 start-page: 493 year: 2011 end-page: 521 ident: bib0170 article-title: Community discovery using nonnegative matrix factorization publication-title: Data Min. Knowl. Discov. – start-page: 265 year: 2016 end-page: 271 ident: bib0165 article-title: Semantic community identification in large attribute networks publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 53 start-page: 818 year: 2023 end-page: 831 ident: bib0175 article-title: Local community detection algorithm based on alternating strategy of strong fusion and weak fusion publication-title: IEEE Trans. Cybern. – start-page: 594 year: 2019 end-page: 602 ident: bib0065 article-title: Deep anomaly detection on attributed networks publication-title: Proceedings of the 2019 SIAM International Conference on Data Mining – volume: 34 start-page: 2539 year: 2022 end-page: 2552 ident: bib0100 article-title: A deep multi-view framework for anomaly detection on attributed networks publication-title: IEEE Trans. Knowl. Data Eng. – year: 2024 ident: bib0260 article-title: Anomalyllm: few-shot anomaly edge detection for dynamic graphs using large language models – volume: 35 start-page: 1149 year: 2023 end-page: 1170 ident: bib0270 article-title: A survey of community detection approaches: from statistical modeling to deep learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: vol. 18 start-page: 3513 year: 2018 end-page: 3519 ident: bib0240 article-title: Anomalous: a joint modeling approach for anomaly detection on attributed networks publication-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence – volume: 7 start-page: 1991 year: 2019 end-page: 2005 ident: bib0080 article-title: Deepant: a deep learning approach for unsupervised anomaly detection in time series publication-title: IEEE Access – volume: 5 start-page: 101 year: 2004 end-page: 113 ident: bib0010 article-title: Network biology: understanding the cell’s functional organization publication-title: Nat. Rev. Genet. – start-page: 93 year: 2000 end-page: 104 ident: bib0045 article-title: LOF: identifying density-based local outliers publication-title: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data – volume: 53 start-page: 3599 year: 2023 end-page: 3612 ident: bib0125 article-title: A novel representation learning for dynamic graphs based on graph convolutional networks publication-title: IEEE Trans. Cybern. – volume: 196 year: 2020 ident: bib0195 article-title: Detecting community in attributed networks by dynamically exploring node attributes and topological structure publication-title: Knowl.-Based Syst. – volume: 11 start-page: 1 year: 1969 end-page: 21 ident: bib0020 article-title: Procedures for detecting outlying observations in samples publication-title: Technometrics – volume: 12 start-page: 485 year: 2025 end-page: 497 ident: bib0255 article-title: Graph anomaly detection VIA multiscale contrastive self-supervised learning from local to global publication-title: IEEE Trans. Comput. Soc. Syst. – volume: 99 start-page: 7821 year: 2002 end-page: 7826 ident: bib0135 article-title: Community structure in social and biological networks publication-title: Proc. Natl. Acad. Sci. – volume: 315 start-page: 972 year: 2007 end-page: 976 ident: bib0225 article-title: Clustering by passing messages between data points publication-title: Science – start-page: 2152 year: 2017 end-page: 2158 ident: bib0055 article-title: Radar: residual analysis for anomaly detection in attributed networks publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence – year: 2024 ident: bib0115 article-title: Deep anomaly detection: a linear one-class SVM approach for high-dimensional and large-scale data publication-title: Appl. Soft Comput. – start-page: 5685 year: 2020 end-page: 5689 ident: bib0085 article-title: Anomalydae: dual autoencoder for anomaly detection on attributed networks publication-title: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – start-page: 5454 year: 2024 end-page: 5465 ident: bib0205 article-title: DAG: deep adaptive and generative k-free community detection on attributed graphs publication-title: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining – volume: 13 start-page: 1 year: 2019 end-page: 24 ident: bib0130 article-title: Detecting and assessing anomalous evolutionary behaviors of nodes in evolving social networks publication-title: ACM Trans. Knowl. Discov. Data – start-page: 1151 year: 2013 end-page: 1156 ident: bib0140 article-title: Community detection in networks with node attributes publication-title: Proceeding of the 2013 IEEE 13th International Conference on Data Mining – start-page: 4676 year: 2023 end-page: 4684 ident: bib0110 article-title: Cross-domain graph anomaly detection VIA anomaly-aware contrastive alignment publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 29628 year: 2023 end-page: 29653 ident: bib0280 article-title: Gadbench: revisiting and benchmarking supervised graph anomaly detection publication-title: Proceeding of the Advances in Neural Information Processing Systems – volume: 7 start-page: 63 year: 2022 ident: bib0210 article-title: Graph neural network inspired algorithm for unsupervised network community detection publication-title: Appl. Netw. Sci. – volume: 35 start-page: 10540 year: 2023 end-page: 10553 ident: bib0105 article-title: Counterfactual graph learning for anomaly detection on attributed networks publication-title: IEEE Trans. Knowl. Data Eng. – volume: 18 start-page: 46 year: 2023 end-page: 59 ident: bib0180 article-title: Multilayer network community detection: a novel multi-objective evolutionary algorithm based on consensus prior information publication-title: IEEE Comput. Intell. Mag. – start-page: 594 year: 2019 ident: 10.1016/j.asoc.2025.114223_bib0065 article-title: Deep anomaly detection on attributed networks – volume: 12 start-page: 485 issue: 2 year: 2025 ident: 10.1016/j.asoc.2025.114223_bib0255 article-title: Graph anomaly detection VIA multiscale contrastive self-supervised learning from local to global publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2024.3457161 – start-page: 813 year: 2010 ident: 10.1016/j.asoc.2025.114223_bib0050 article-title: On community outliers and their efficient detection in information networks – ident: 10.1016/j.asoc.2025.114223_bib0035 – volume: 315 start-page: 972 issue: 5814 year: 2007 ident: 10.1016/j.asoc.2025.114223_bib0225 article-title: Clustering by passing messages between data points publication-title: Science doi: 10.1126/science.1136800 – year: 2024 ident: 10.1016/j.asoc.2025.114223_bib0115 article-title: Deep anomaly detection: a linear one-class SVM approach for high-dimensional and large-scale data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.112369 – volume: 5 start-page: 101 issue: 2 year: 2004 ident: 10.1016/j.asoc.2025.114223_bib0010 article-title: Network biology: understanding the cell’s functional organization publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1272 – start-page: 93 year: 2000 ident: 10.1016/j.asoc.2025.114223_bib0045 article-title: LOF: identifying density-based local outliers – start-page: 785 year: 2020 ident: 10.1016/j.asoc.2025.114223_bib0015 article-title: Financial defaulter detection on online credit payment VIA multi-view attributed heterogeneous information network – volume: 14 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.asoc.2025.114223_bib0190 article-title: Network embedding for community detection in attributed networks publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/3385415 – start-page: 29628 year: 2023 ident: 10.1016/j.asoc.2025.114223_bib0280 article-title: Gadbench: revisiting and benchmarking supervised graph anomaly detection – start-page: 7459 year: 2023 ident: 10.1016/j.asoc.2025.114223_bib0245 article-title: Graph anomaly detection VIA multi-scale contrastive learning networks with augmented view – start-page: 265 year: 2016 ident: 10.1016/j.asoc.2025.114223_bib0165 article-title: Semantic community identification in large attribute networks – start-page: 1117 year: 2023 ident: 10.1016/j.asoc.2025.114223_bib0265 article-title: Loggpt: log anomaly detection VIA GPT – volume: 53 start-page: 818 issue: 2 year: 2023 ident: 10.1016/j.asoc.2025.114223_bib0175 article-title: Local community detection algorithm based on alternating strategy of strong fusion and weak fusion publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2022.3159584 – volume: 99 start-page: 7821 issue: 12 year: 2002 ident: 10.1016/j.asoc.2025.114223_bib0135 article-title: Community structure in social and biological networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.122653799 – volume: 35 start-page: 12012 issue: 12 year: 2023 ident: 10.1016/j.asoc.2025.114223_bib0025 article-title: A comprehensive survey on graph anomaly detection with deep learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3118815 – ident: 10.1016/j.asoc.2025.114223_bib0120 – volume: 9 start-page: 689 issue: 2 year: 2022 ident: 10.1016/j.asoc.2025.114223_bib0150 article-title: Community detection in graph: an embedding method publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2021.3130321 – volume: 35 start-page: 10540 issue: 10 year: 2023 ident: 10.1016/j.asoc.2025.114223_bib0105 article-title: Counterfactual graph learning for anomaly detection on attributed networks publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2023.3250523 – start-page: 1151 year: 2013 ident: 10.1016/j.asoc.2025.114223_bib0140 article-title: Community detection in networks with node attributes – volume: 118 year: 2022 ident: 10.1016/j.asoc.2025.114223_bib0200 article-title: Community-based anomaly detection using spectral graph filtering publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108489 – start-page: 4676 year: 2023 ident: 10.1016/j.asoc.2025.114223_bib0110 article-title: Cross-domain graph anomaly detection VIA anomaly-aware contrastive alignment – volume: 44 start-page: 499 issue: 4 year: 2014 ident: 10.1016/j.asoc.2025.114223_bib0005 article-title: Discovering and profiling overlapping communities in location-based social networks publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2013.2256890 – start-page: 410 year: 2010 ident: 10.1016/j.asoc.2025.114223_bib0060 article-title: Oddball: spotting anomalies in weighted graphs – ident: 10.1016/j.asoc.2025.114223_bib0075 – start-page: 5454 year: 2024 ident: 10.1016/j.asoc.2025.114223_bib0205 article-title: DAG: deep adaptive and generative k-free community detection on attributed graphs – volume: 7 start-page: 1991 year: 2019 ident: 10.1016/j.asoc.2025.114223_bib0080 article-title: Deepant: a deep learning approach for unsupervised anomaly detection in time series publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886457 – ident: 10.1016/j.asoc.2025.114223_bib0260 – volume: 11 start-page: 1 issue: 1 year: 1969 ident: 10.1016/j.asoc.2025.114223_bib0020 article-title: Procedures for detecting outlying observations in samples publication-title: Technometrics doi: 10.1080/00401706.1969.10490657 – start-page: 207 year: 2016 ident: 10.1016/j.asoc.2025.114223_bib0235 article-title: Scalable anomaly ranking of attributed neighborhoods – volume: 53 start-page: 3599 issue: 6 year: 2023 ident: 10.1016/j.asoc.2025.114223_bib0125 article-title: A novel representation learning for dynamic graphs based on graph convolutional networks publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2022.3159661 – start-page: 1253 year: 2023 ident: 10.1016/j.asoc.2025.114223_bib0250 article-title: Prem: a simple yet effective approach for node-level graph anomaly detection – volume: 196 year: 2020 ident: 10.1016/j.asoc.2025.114223_bib0195 article-title: Detecting community in attributed networks by dynamically exploring node attributes and topological structure publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105760 – volume: 7 start-page: 63 issue: 1 year: 2022 ident: 10.1016/j.asoc.2025.114223_bib0210 article-title: Graph neural network inspired algorithm for unsupervised network community detection publication-title: Appl. Netw. Sci. doi: 10.1007/s41109-022-00500-z – volume: 18 start-page: 46 issue: 2 year: 2023 ident: 10.1016/j.asoc.2025.114223_bib0180 article-title: Multilayer network community detection: a novel multi-objective evolutionary algorithm based on consensus prior information publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2023.3245729 – start-page: 2233 year: 2019 ident: 10.1016/j.asoc.2025.114223_bib0070 article-title: Specae: spectral autoencoder for anomaly detection in attributed networks – volume: 48 start-page: 1963 issue: 7 year: 2018 ident: 10.1016/j.asoc.2025.114223_bib0145 article-title: A multiobjective evolutionary algorithm based on structural and attribute similarities for community detection in attributed networks publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2720180 – volume: 22 start-page: 493 issue: 3 year: 2011 ident: 10.1016/j.asoc.2025.114223_bib0170 article-title: Community discovery using nonnegative matrix factorization publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-010-0181-y – volume: 33 start-page: 2378 issue: 6 year: 2021 ident: 10.1016/j.asoc.2025.114223_bib0090 article-title: Anomaly detection on attributed networks VIA contrastive self-supervised learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3068344 – start-page: 5685 year: 2020 ident: 10.1016/j.asoc.2025.114223_bib0085 article-title: Anomalydae: dual autoencoder for anomaly detection on attributed networks – start-page: 657 year: 2022 ident: 10.1016/j.asoc.2025.114223_bib0095 article-title: Comga: community-aware attributed graph anomaly detection – start-page: 2173 year: 2017 ident: 10.1016/j.asoc.2025.114223_bib0230 article-title: Affinity learning for mixed data clustering – volume: 35 start-page: 1149 issue: 2 year: 2023 ident: 10.1016/j.asoc.2025.114223_bib0270 article-title: A survey of community detection approaches: from statistical modeling to deep learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 154 year: 2024 ident: 10.1016/j.asoc.2025.114223_bib0160 article-title: Evolutionary multi-objective overlapping community detection based on fusion of internal and external connectivity and correction of node intimacy publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111414 – volume: vol. 18 start-page: 3513 year: 2018 ident: 10.1016/j.asoc.2025.114223_bib0240 article-title: Anomalous: a joint modeling approach for anomaly detection on attributed networks – start-page: 338 year: 2018 ident: 10.1016/j.asoc.2025.114223_bib0185 article-title: Community detection in attributed graphs: an embedding approach – volume: 34 start-page: 2539 issue: 6 year: 2022 ident: 10.1016/j.asoc.2025.114223_bib0100 article-title: A deep multi-view framework for anomaly detection on attributed networks publication-title: IEEE Trans. Knowl. Data Eng. – volume: 2 start-page: 41 issue: 1 year: 2018 ident: 10.1016/j.asoc.2025.114223_bib0040 article-title: A deep learning approach to network intrusion detection publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2017.2772792 – start-page: 2152 year: 2017 ident: 10.1016/j.asoc.2025.114223_bib0055 article-title: Radar: residual analysis for anomaly detection in attributed networks – volume: 2 start-page: 37 issue: 1 year: 1987 ident: 10.1016/j.asoc.2025.114223_bib0220 article-title: Principal component analysis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(87)80084-9 – start-page: 3101 year: 2020 ident: 10.1016/j.asoc.2025.114223_bib0030 article-title: Interleaved sequence RNNS for fraud detection – volume: 52 start-page: 1539 issue: 3 year: 2022 ident: 10.1016/j.asoc.2025.114223_bib0155 article-title: Dynamic immunization node model for complex networks based on community structure and threshold publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2989427 – start-page: 1288 year: 2021 ident: 10.1016/j.asoc.2025.114223_bib0275 article-title: Inductive anomaly detection on attributed networks – volume: 13 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.asoc.2025.114223_bib0130 article-title: Detecting and assessing anomalous evolutionary behaviors of nodes in evolving social networks publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/3299886 – ident: 10.1016/j.asoc.2025.114223_bib0215 |
| SSID | ssj0016928 |
| Score | 2.4569876 |
| Snippet | Anomaly detection in attributed networks (ADAN) aims to identify abnormal nodes that exhibit unexpected link structures and attributes compared to the others.... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 114223 |
| SubjectTerms | Affinity propagation Anomaly detection Attributed network Community detection Graph variational autoencoder |
| Title | Graph variational autoencoder with affinity propagation for community-aware anomaly detection in attributed networks |
| URI | https://dx.doi.org/10.1016/j.asoc.2025.114223 |
| Volume | 186 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016928 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3db9MwEMCt0vHAC9-IwZj8wFuVKXHjxH6cpo0PTRMPAxVeIjuxt5SRjtUt29_AP71zbKdZNRB74CWqovYa5X66O5_vzgi91VkeE6VFlBBFojRLZMRlXEUJBMuCCl7xdhLTl8P86IhNJvzTYPA79MIsz_KmYZeX_Py_qhrugbJt6-wd1N0JhRvwGZQOV1A7XP9J8e_sCOrREtbAIc8nFmZm51XasRGul03rurHhN5hPMCiresPStYuYq0j8Eu3OwuyHOLsaVcqoMpRFCuNOybKFA66IfN4PcUNcOwcD31asL0xwj-1eR5ub_XZaT-uOqa8-ab13qpqT74uO1wOXnZ3UYvazJ-Ow9tmEkyDDpy1IP23hLW3GopT7_GNnivvGtG3zHd9q513KYbojAGFY5BO6s_ryzaHaa86uK0EM1W3TwsoorIzCybiHNkhOORuijd0P-5OP3aZUxtujersn9z1Yrlxw_Uluj3N6scvxY_TQLzrwroPlCRqo5il6FA70wN6-P0OmZQf32ME9drBlBwd2cI8dDOzgNXawZwd37OC6wSt2cGDnOfp8sH-89z7yx3JEZZIxE5EyjZVmlOlS01wTmRIBbopmIonLONYVFYmUXEqmuRrHwvoUBasQCf5Mj3MxfoGGzaxRLxHmMhGpyBiN0wqipJhVnIg8kSWhEqxIvolG4SUW5276SvFnxW0iGt5z4eNHFxcWgM1ffvfqTv_yGj1Y8byFhuZiod6g--XS1POLbc_MNf6Pl2o |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+variational+autoencoder+with+affinity+propagation+for+community-aware+anomaly+detection+in+attributed+networks&rft.jtitle=Applied+soft+computing&rft.au=Cao%2C+Zhijie&rft.au=Yang%2C+Chengkun&rft.au=Fan%2C+Xiaoqing&rft.au=Li%2C+Lingjie&rft.date=2026-01-01&rft.issn=1568-4946&rft.volume=186&rft.spage=114223&rft_id=info:doi/10.1016%2Fj.asoc.2025.114223&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2025_114223 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |