Fast polynomial spline interpolation algorithm with shape-preserving properties

In this article, we address the problem of interpolating data points by regular L sub(1-spline polynomial curves of smoothness C) super(k), k[greater-or-equal, slanted]1, that are invariant under rotation of the data. To obtain a C super(1 cubic interpolating curve, we use a local minimization metho...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer aided geometric design Ročník 28; číslo 1; s. 65 - 74
Hlavní autoři: Nyiri, Eric, Gibaru, Olivier, Auquiert, Philippe
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.01.2011
Témata:
ISSN:0167-8396
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we address the problem of interpolating data points by regular L sub(1-spline polynomial curves of smoothness C) super(k), k[greater-or-equal, slanted]1, that are invariant under rotation of the data. To obtain a C super(1 cubic interpolating curve, we use a local minimization method in parallel on five data points belonging to a sliding window. This procedure is extended to create C) super(k)-continuous L sub(1 splines, k[greater-or-equal, slanted]2, on larger windows. We show that, in the C) super(k)-continuous (k[greater-or-equal, slanted]1) interpolation case, this local minimization method preserves the linear parts of the data well, while a global L sub(1 minimization method does not in general do so. The computational complexity of the procedure is linear in the global number of data points, no matter what the order C) super(k) of smoothness of the curve is.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0167-8396
DOI:10.1016/j.cagd.2010.10.002