The Problem of Finding the Maximal Multiple Flow in the Divisible Network and its Special Cases

In the article the problem of finding the maximal multiple flow in the network of any natural multiplicity k is studied. There are arcs of three types: ordinary arcs, multiple arcs and multi-arcs. Each multiple and multi-arc is a union of k linked arcs, which are adjusted with each other. The network ...

Full description

Saved in:
Bibliographic Details
Published in:Modelirovanie i analiz informacionnyh sistem Vol. 22; no. 4; pp. 533 - 545
Main Author: Smirnov, A. V.
Format: Journal Article
Language:English
Published: Yaroslavl State University 15.10.2015
Subjects:
ISSN:1818-1015, 2313-5417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the article the problem of finding the maximal multiple flow in the network of any natural multiplicity k is studied. There are arcs of three types: ordinary arcs, multiple arcs and multi-arcs. Each multiple and multi-arc is a union of k linked arcs, which are adjusted with each other. The network constructing rules are described. The definitions of a divisible network and some associated subjects are stated. The important property of the divisible network is that every divisible network can be partitioned into k parts, which are adjusted on the linked arcs of each multiple and multi-arc. Each part is the ordinary transportation network. The main results of the article are the following subclasses of the problem of finding the maximal multiple flow in the divisible network. 1. The divisible networks with the multi-arc constraints. Assume that only one vertex is the ending vertex for a multi-arc in k −1 network parts. In this case the problem can be solved in a polynomial time. 2. The divisible networks with the weak multi-arc constraints. Assume that only one vertex is the ending vertex for a multi-arc in s network parts (1 ≤ s < k − 1) and other parts have at least two such vertices. In that case the multiplicity of the multiple flow problem can be decreased to k − s. 3. The divisible network of the parallel structure. Assume that the divisible network component, which consists of all multiple arcs, can be partitioned into subcomponents, each of them containing exactly one vertex-beginning of a multi-arc. Suppose that intersection of each pair of subcomponents is the only vertex-network source x0. If k = 2, the maximal flow problem can be solved in a polynomial time. If k ≥ 3, the problem is NP-complete. The algorithms for each polynomial subclass are suggested. Also, the multiplicity decreasing algorithm for the divisible network with weak multi-arc constraints is formulated.
AbstractList In the article the problem of finding the maximal multiple flow in the network of any natural multiplicity k is studied. There are arcs of three types: ordinary arcs, multiple arcs and multi-arcs. Each multiple and multi-arc is a union of k linked arcs, which are adjusted with each other. The network constructing rules are described. The definitions of a divisible network and some associated subjects are stated. The important property of the divisible network is that every divisible network can be partitioned into k parts, which are adjusted on the linked arcs of each multiple and multi-arc. Each part is the ordinary transportation network. The main results of the article are the following subclasses of the problem of finding the maximal multiple flow in the divisible network. 1. The divisible networks with the multi-arc constraints. Assume that only one vertex is the ending vertex for a multi-arc in k −1 network parts. In this case the problem can be solved in a polynomial time. 2. The divisible networks with the weak multi-arc constraints. Assume that only one vertex is the ending vertex for a multi-arc in s network parts (1 ≤ s < k − 1) and other parts have at least two such vertices. In that case the multiplicity of the multiple flow problem can be decreased to k − s. 3. The divisible network of the parallel structure. Assume that the divisible network component, which consists of all multiple arcs, can be partitioned into subcomponents, each of them containing exactly one vertex-beginning of a multi-arc. Suppose that intersection of each pair of subcomponents is the only vertex-network source x0. If k = 2, the maximal flow problem can be solved in a polynomial time. If k ≥ 3, the problem is NP-complete. The algorithms for each polynomial subclass are suggested. Also, the multiplicity decreasing algorithm for the divisible network with weak multi-arc constraints is formulated.
Author Smirnov, A. V.
Author_xml – sequence: 1
  givenname: A. V.
  surname: Smirnov
  fullname: Smirnov, A. V.
BookMark eNo9kMtOwzAQRS1UJErpP5gPCHj8iJMlKhSQWkCirC3Hj2JI4yoJFP4ep0XdzIyuZ46sc45GTWwcQpdArqCgQlxDAUUGBERGh8IzwVgmuDhBY8pgGEGO0Pi4doamXRcqwrlMm0KOkVq9O_zSxqp2Gxw9nofGhmaN-xQv9U_Y6Bovv-o-bGuH53Xc4dDsH2_Dd0iolD65fhfbT6wbi0Pf4detMyGdzXTnugt06nXduel_n6C3-d1q9pAtnu8fZzeLzEAuRVY6KYqqKh0zJYdKOlIAc5R5njNrHeFVKYnVRlughaAAljnNaV7lhmsuJZugxwPXRv2htm36ePurog5qH8R2rXTbB1M7BTbPwRjvc055oZn2ubTElJRaT0pLE6s8sEwbu651_sgDovbi1WBUDUbVIF5xlXSqJJ79AfiUd30
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.18255/1818-1015-2015-4-533-545
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2313-5417
EndPage 545
ExternalDocumentID oai_doaj_org_article_1d661ccff64248a3af67d0c922df09d2
10_18255_1818_1015_2015_4_533_545
GroupedDBID 5VS
642
AAFWJ
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
IPNFZ
KQ8
RIG
ID FETCH-LOGICAL-c1675-9e758bb9e3c941b7e0813e23f463dde04b970dacad1285211d3ea426b6c4a4773
IEDL.DBID DOA
ISSN 1818-1015
IngestDate Fri Oct 03 12:45:41 EDT 2025
Sat Nov 29 02:26:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1675-9e758bb9e3c941b7e0813e23f463dde04b970dacad1285211d3ea426b6c4a4773
OpenAccessLink https://doaj.org/article/1d661ccff64248a3af67d0c922df09d2
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_1d661ccff64248a3af67d0c922df09d2
crossref_primary_10_18255_1818_1015_2015_4_533_545
PublicationCentury 2000
PublicationDate 2015-10-15
PublicationDateYYYYMMDD 2015-10-15
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-15
  day: 15
PublicationDecade 2010
PublicationTitle Modelirovanie i analiz informacionnyh sistem
PublicationYear 2015
Publisher Yaroslavl State University
Publisher_xml – name: Yaroslavl State University
SSID ssib044753357
ssib009050552
ssib059259322
ssib006738434
ssj0001879522
Score 1.9259738
Snippet In the article the problem of finding the maximal multiple flow in the network of any natural multiplicity k is studied. There are arcs of three types: ordinary...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 533
SubjectTerms divisible networks
multiple networks
multiple flows
np-completeness
polynomial algorithm
Title The Problem of Finding the Maximal Multiple Flow in the Divisible Network and its Special Cases
URI https://doaj.org/article/1d661ccff64248a3af67d0c922df09d2
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-5417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001879522
  issn: 1818-1015
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-5417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044753357
  issn: 1818-1015
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07a8MwEBallNKl79I3KnQ1sS0pssY-ErokZGghm5D1AEPrlCR9TP3tvZOd4K1LFw8yEvh00ndnnb6PkNsgDPOBq0SqMk-45C4pcF2FQnFpg8oK56LYhByPi-lUTTpSX1gT1tADN4brZQ4QxNoQIFDmhWEm9KVLrcpzF1Ll4u4LUU8nmWrOF1nRJT5TKNgm1kCOLHesQ8QmFGQBrCWyi39nUIM7HkEAAiL_aSa2yQ3uMJBRid66EZwMHjyB0RKBV6I64NbRAIhgNdwnu22USe-arzsgG74-JHsrBQfaLugjosFL6KTRlKGzQIdVvORCISqkI_NdvcEgo7bkkA5fZ1-0quPLxwovpUM3Om7qyKmpHa2WC9oK2tMHgMfFMXkZDp4fnpJWciGxGaQOifKQP5Sl8swqnpXSQ8TAfM4C7zPYCFNeKpk6Y40DXAPkzxzzBkC-7FtuuJTshGzWs9qfEhog-Q1CIj0P1pIWyuLMFS6ElHuYxTOSr2yl3xtmDY0ZCRpYo4Gx-kxoNLDmGgyswcBn5B6tuu6A5NixAVxGty6j_3KZ8_8Y5ILsxLnH4hZxSTaX8w9_Rbbs57JazK-jN8Jz9DP4BfZV2JU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Problem+of+Finding+the+Maximal+Multiple+Flow+in+the+Divisible+Network+and+its+Special+Cases&rft.jtitle=Modelirovanie+i+analiz+informacionnyh+sistem&rft.au=Smirnov%2C+A.+V.&rft.date=2015-10-15&rft.issn=1818-1015&rft.eissn=2313-5417&rft.volume=22&rft.issue=4&rft.spage=533&rft_id=info:doi/10.18255%2F1818-1015-2015-4-533-545&rft.externalDBID=n%2Fa&rft.externalDocID=10_18255_1818_1015_2015_4_533_545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1818-1015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1818-1015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1818-1015&client=summon